|
This article is cited in 2 scientific papers (total in 2 papers)
The canonical module and anti-invariant elements
S. S. Strogalov
Abstract:
Let $S$ be a ring having canonical module; let $\mathfrak G$ be a finite group of automorphisms of this ring, and let $R$ be the subring of elements of $S$ invariant with respect to the action of $\mathfrak G$. We study the problem of existence and characterization of the canonical module of the ring $R$. In particular we apply our results to the problem of descent of the Gorenstein property of a ring.
Bibliography: 19 titles.
Full text:
PDF file (2959 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1977, 11:6, 1151–1174
Bibliographic databases:
UDC:
519.4
MSC: Primary 13H10; Secondary 20B25 Received: 14.01.1976
Citation:
S. S. Strogalov, “The canonical module and anti-invariant elements”, Izv. Akad. Nauk SSSR Ser. Mat., 41:6 (1977), 1205–1230; Math. USSR-Izv., 11:6 (1977), 1151–1174
Citation in format AMSBIB
\Bibitem{Str77}
\by S.~S.~Strogalov
\paper The canonical module and anti-invariant elements
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1977
\vol 41
\issue 6
\pages 1205--1230
\mathnet{http://mi.mathnet.ru/izv2067}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=506305}
\zmath{https://zbmath.org/?q=an:0388.13005|0396.13024}
\transl
\jour Math. USSR-Izv.
\yr 1977
\vol 11
\issue 6
\pages 1151--1174
\crossref{https://doi.org/10.1070/IM1977v011n06ABEH001764}
Linking options:
http://mi.mathnet.ru/eng/izv2067 http://mi.mathnet.ru/eng/izv/v41/i6/p1205
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Annetta G Aramova, “Reductive derivations of local rings of characteristic p”, Journal of Algebra, 109:2 (1987), 394
-
Annetta G Aramova, “Symmetric products of Gorenstein varieties”, Journal of Algebra, 146:2 (1992), 482
|
Number of views: |
This page: | 148 | Full text: | 53 | References: | 40 | First page: | 1 |
|