RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1976, Volume 40, Issue 1, Pages 152–189 (Mi izv2104)  

This article is cited in 5 scientific papers (total in 5 papers)

On the spectral theory for the Sturm–Liouville equation with operator coefficient

P. A. Mishnaevskii


Abstract: For the Sturm–Liouville equation with an operator coefficient we study selfadjoint Friedrichs extensions in the space $L_2(H(x),(0,\infty),dx)$. Then we use our results to investigate selfadjoint extensions of the Schrödinger operator in $L_2(\Omega)$, where $\Omega$ is a domain with an infinite boundary, using various boundary conditions.
Bibliography: 19 titles.

Full text: PDF file (2850 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1976, 10:1, 145–180

Bibliographic databases:

UDC: 517.43
MSC: Primary 34B25, 47E05, 35J10, 35P25; Secondary 47A20
Received: 30.01.1975

Citation: P. A. Mishnaevskii, “On the spectral theory for the Sturm–Liouville equation with operator coefficient”, Izv. Akad. Nauk SSSR Ser. Mat., 40:1 (1976), 152–189; Math. USSR-Izv., 10:1 (1976), 145–180

Citation in format AMSBIB
\Bibitem{Mis76}
\by P.~A.~Mishnaevskii
\paper On the spectral theory for the Sturm--Liouville equation with operator coefficient
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1976
\vol 40
\issue 1
\pages 152--189
\mathnet{http://mi.mathnet.ru/izv2104}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=422804}
\zmath{https://zbmath.org/?q=an:0326.34031}
\transl
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 1
\pages 145--180
\crossref{https://doi.org/10.1070/IM1976v010n01ABEH001683}


Linking options:
  • http://mi.mathnet.ru/eng/izv2104
  • http://mi.mathnet.ru/eng/izv/v40/i1/p152

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. A. Mishnaevskii, “Expansion by eigenfunctions of a Sturm–Liouville operator with slowly decreasing potential”, Russian Math. Surveys, 33:1 (1978), 211–212  mathnet  crossref  mathscinet  zmath
    2. P. A. Mishnaevskii, A. G. Ramm, “On the uniqueness of harmonic coordinates in the general theory of relativity”, Russian Math. Surveys, 34:1 (1979), 235–236  mathnet  crossref  mathscinet  zmath
    3. P.A Mishnaevsky, A.G Ramm, “Uniqueness theorem for abstract hyperbolic equations with application to the uniqueness of the harmonic coordinate system in general relativity”, Journal of Mathematical Analysis and Applications, 75:1 (1980), 58  crossref
    4. P.A Mishnaevsky, A.G Ramm, “Asymptotics of resonant states”, Journal of Mathematical Analysis and Applications, 87:2 (1982), 323  crossref
    5. Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko, “On spectral theory for Schrödinger operators with operator-valued potentials”, Journal of Differential Equations, 2013  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:213
    Full text:68
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019