RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1971, Volume 35, Issue 6, Pages 1269–1293 (Mi izv2171)  

This article is cited in 14 scientific papers (total in 14 papers)

Families of algebraic curves with fixed degeneracies

S. Yu. Arakelov


Abstract: In this paper we prove that there exist only finitely many nonisomorphic and nonconstant curves of fixed genus, defined over a fixed function field and having bad reductions at a given finite set of points of this field.

Full text: PDF file (2072 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1971, 5:6, 1277–1302

Bibliographic databases:

UDC: 513.724
MSC: Primary 14H10; Secondary 14J15
Received: 15.06.1971

Citation: S. Yu. Arakelov, “Families of algebraic curves with fixed degeneracies”, Izv. Akad. Nauk SSSR Ser. Mat., 35:6 (1971), 1269–1293; Math. USSR-Izv., 5:6 (1971), 1277–1302

Citation in format AMSBIB
\Bibitem{Ara71}
\by S.~Yu.~Arakelov
\paper Families of algebraic curves with fixed degeneracies
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1971
\vol 35
\issue 6
\pages 1269--1293
\mathnet{http://mi.mathnet.ru/izv2171}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=321933}
\zmath{https://zbmath.org/?q=an:0238.14012}
\transl
\jour Math. USSR-Izv.
\yr 1971
\vol 5
\issue 6
\pages 1277--1302
\crossref{https://doi.org/10.1070/IM1971v005n06ABEH001235}


Linking options:
  • http://mi.mathnet.ru/eng/izv2171
  • http://mi.mathnet.ru/eng/izv/v35/i6/p1269

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Tankeev, “On homomorphisms of Abelian schemes. II”, Math. USSR-Izv., 11:6 (1977), 1175–1194  mathnet  crossref  mathscinet  zmath
    2. Spencer Bloch, “The proof of the mordell conjecture”, Math Intelligencer, 6:2 (1984), 41  crossref  mathscinet  zmath
    3. G. A. Mustafin, “Families of algebraic varieties and invariant cycles”, Math. USSR-Izv., 27:2 (1986), 251–278  mathnet  crossref  mathscinet  zmath
    4. M. G. Zaidenberg, “Isotrivial families of curves on affine surfaces and characterization of the affine plane”, Math. USSR-Izv., 30:3 (1988), 503–532  mathnet  crossref  mathscinet  zmath
    5. Werner Lütkebohmert, Ferdinand Vogel, “Algebraic families ofp-adic tori”, Math Z, 207:1 (1991), 619  crossref  mathscinet  zmath  isi
    6. Fernando Serrano, “The sheaf of relative differentials of a fibred surface”, Math Proc Camb Phil Soc, 114:3 (1993), 461  crossref  mathscinet  zmath
    7. Sheng-Li Tan, “On the invariants of base changes of pencils of curves, I”, manuscripta math, 84:1 (1994), 225  crossref  mathscinet  zmath
    8. Sheng-Li Tan, “On the invariants of base changes of pencils of curves, II”, Math Z, 222:1 (1996), 655  crossref  mathscinet  zmath  isi
    9. S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Math., 67:3 (2003), 597–635  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. ALEXIS G. ZAMORA, “UNIPOTENT REDUCTION AND THE Poincaré PROBLEM”, Int. J. Math, 17:08 (2006), 949  crossref
    11. Robin Jong, “Local invariants attached to Weierstrass points”, manuscripta math, 2009  crossref  isi
    12. L. Benzo, “Rational Curves on and K3 Surfaces”, International Mathematics Research Notices, 2013  crossref
    13. Naoyuki Monden, “Lefschetz fibrations with small slope”, Pacific J. Math, 267:1 (2014), 243  crossref
    14. S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Math., 79:1 (2015), 177–207  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:617
    Full text:323
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019