|
This article is cited in 3 scientific papers (total in 3 papers)
On homomorphisms of Abelian schemes
S. G. Tankeev
Abstract:
In this paper we consider homomorphisms of abelian schemes $\pi_i\colon X_i \to S$ ($i=1,2$) over a connected smooth algebraic curve $S$ defined over the field of complex numbers. We prove that under certain natural conditions the canonical map
$$
\operatorname{Hom}_S(X_1,X_2)\to\operatorname{Hom}(R_1\pi_{1*}Z,R_1\pi_{2*}Z)
$$
is an isomorphism.
Bibliography: 5 titles.
Full text:
PDF file (1493 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1976, 10:4, 731–747
Bibliographic databases:
UDC:
513.6
MSC: Primary 14K20; Secondary 14F25 Received: 05.06.1975
Citation:
S. G. Tankeev, “On homomorphisms of Abelian schemes”, Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976), 774–790; Math. USSR-Izv., 10:4 (1976), 731–747
Citation in format AMSBIB
\Bibitem{Tan76}
\by S.~G.~Tankeev
\paper On homomorphisms of Abelian schemes
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1976
\vol 40
\issue 4
\pages 774--790
\mathnet{http://mi.mathnet.ru/izv2202}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=453758}
\zmath{https://zbmath.org/?q=an:0347.14021}
\transl
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 4
\pages 731--747
\crossref{https://doi.org/10.1070/IM1976v010n04ABEH001811}
Linking options:
http://mi.mathnet.ru/eng/izv2202 http://mi.mathnet.ru/eng/izv/v40/i4/p774
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
S. G. Tankeev, “On homomorphisms of Abelian schemes. II”, Math. USSR-Izv., 11:6 (1977), 1175–1194
-
S. G. Tankeev, “On algebraic cycles on Abelian varieties”, Math. USSR-Izv., 12:3 (1978), 617–643
-
S. G. Tankeev, “On algebraic cycles on surfaces and Abelian varieties”, Math. USSR-Izv., 18:2 (1982), 349–380
|
Number of views: |
This page: | 192 | Full text: | 60 | References: | 32 | First page: | 2 |
|