|
This article is cited in 2 scientific papers (total in 2 papers)
Complex homogeneous spaces of the Lie group $SO(2k+1,2l+1)$
F. M. Malyshev
Abstract:
Let $G$ be a connected Lie group, with Lie algebra which is the real form of the second category of type $D_n$. This paper lists all the connected closed subgroups $U$ of $G$ such that there exists a complex structure on the manifold $M=G/U$ which is invariant under $G$, and it also describes all such structures on $M$.
Bibliography: 7 titles.
Full text:
PDF file (1931 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1976, 10:4, 763–782
Bibliographic databases:
UDC:
519.4
MSC: Primary 32M10; Secondary 17B20 Received: 17.04.1975
Citation:
F. M. Malyshev, “Complex homogeneous spaces of the Lie group $SO(2k+1,2l+1)$”, Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976), 806–827; Math. USSR-Izv., 10:4 (1976), 763–782
Citation in format AMSBIB
\Bibitem{Mal76}
\by F.~M.~Malyshev
\paper Complex homogeneous spaces of the Lie group $SO(2k+1,2l+1)$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1976
\vol 40
\issue 4
\pages 806--827
\mathnet{http://mi.mathnet.ru/izv2204}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=419858}
\zmath{https://zbmath.org/?q=an:0334.53049}
\transl
\jour Math. USSR-Izv.
\yr 1976
\vol 10
\issue 4
\pages 763--782
\crossref{https://doi.org/10.1070/IM1976v010n04ABEH001813}
Linking options:
http://mi.mathnet.ru/eng/izv2204 http://mi.mathnet.ru/eng/izv/v40/i4/p806
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
F. M. Malyshev, “Complex homogeneous spaces of semisimple Lie groups of type $D_n$”, Math. USSR-Izv., 11:4 (1977), 783–805
-
F. M. Malyshev, “Complete complex structures on homogeneous spaces of semisimple Lie groups”, Math. USSR-Izv., 15:3 (1980), 501–522
|
Number of views: |
This page: | 156 | Full text: | 49 | References: | 38 | First page: | 1 |
|