General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Izv. RAN. Ser. Mat.:

Personal entry:
Save password
Forgotten password?

Izv. Akad. Nauk SSSR Ser. Mat., 1973, Volume 37, Issue 1, Pages 186–216 (Mi izv2221)  

This article is cited in 63 scientific papers (total in 63 papers)

The existence of caustics for a billiard problem in a convex domain

V. F. Lazutkin

Abstract: A system of caustics is found for a plane convex domain with a sufficiently smooth boundary; the caustics are close to the boundary and occupy a set of positive measure. A caustic is a convex smooth curve lying in the domain and possessing the property that a tangent to it becomes another tangent to the same curve after reflection from the boundary according to the law of geometrical optics.

Full text: PDF file (2486 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1973, 7:1, 185–214

Bibliographic databases:

UDC: 517.9
MSC: Primary 34C35; Secondary 52A10
Received: 07.02.1972

Citation: V. F. Lazutkin, “The existence of caustics for a billiard problem in a convex domain”, Izv. Akad. Nauk SSSR Ser. Mat., 37:1 (1973), 186–216; Math. USSR-Izv., 7:1 (1973), 185–214

Citation in format AMSBIB
\by V.~F.~Lazutkin
\paper The existence of caustics for a~billiard problem in a~convex domain
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1973
\vol 37
\issue 1
\pages 186--216
\jour Math. USSR-Izv.
\yr 1973
\vol 7
\issue 1
\pages 185--214

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Lazutkin, “Asymptotics of the eigenvalues of the Laplacian and quasimodes. A series of quasimodes corresponding to a system of caustics close to the boundary of the domain”, Math. USSR-Izv., 7:2 (1973), 439–466  mathnet  crossref  mathscinet  zmath
    2. M V Berry, J Phys A Math Gen, 10:12 (1977), 2083  crossref  mathscinet  zmath  adsnasa
    3. Jürgen Pöschel, “Integrability of Hamiltonian systems on Cantor sets”, Comm Pure Appl Math, 35:5 (1982), 653  crossref  mathscinet
    4. John N. Mather, “Glancing billiards”, Ergod Th Dynam Sys, 2:3-4 (1982)  crossref  mathscinet
    5. Y. Y. Bai, Gabriel Hose, K. Stefański, H. S. Taylor, “Born-Oppenheimer adiabatic mechanism for regularity of states in the quantum stadium billiard”, Phys Rev A, 31:5 (1985), 2821  crossref  mathscinet  adsnasa  isi
    6. Eugene Gutkin, “Billiards in polygons”, Physica D: Nonlinear Phenomena, 19:3 (1986), 311  crossref
    7. Raphaël Douady, “Regular dependence of invariant curves and Aubry–Mather sets of twist maps of an annulus”, Ergod Th Dynam Sys, 8:4 (1988)  crossref  zmath
    8. L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, “Markov partitions for two-dimensional hyperbolic billiards”, Russian Math. Surveys, 45:3 (1990), 105–152  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. L. A. Bunimovich, “Conditions of stochasticity of two-dimensional billiards”, Chaos, 1:2 (1991), 187  crossref  mathscinet  zmath  adsnasa
    10. Victor J. Donnay, “Using integrability to produce chaos: Billiards with positive entropy”, Comm Math Phys, 141:2 (1991), 225  crossref  mathscinet  zmath
    11. N. Chernov, R. Markarian, “Entropy of non-uniformly hyperbolic plane billiards”, Bol Soc Bras Mat, 23:1-2 (1992), 121  crossref  mathscinet  zmath
    12. Domokos Szász, “On theK-property of some planar hyperbolic billiards”, Comm Math Phys, 145:3 (1992), 595  crossref  mathscinet  zmath
    13. Barbara Dietz, Uzy Smilansky, “A scattering approach to the quantization of billiards— The inside–outside duality”, Chaos, 3:4 (1993), 581  crossref  mathscinet  zmath
    14. Bruno Crespi, Gabriel Perez, Shau-Jin Chang, “Quantum Poincaré sections for two-dimensional billiards”, Phys Rev E, 47:2 (1993), 986  crossref  mathscinet  isi
    15. Edoh Y. Amiran, “A dynamical approach to symplectic and spectral invariants for billiards”, Comm Math Phys, 154:1 (1993), 99  crossref  mathscinet  zmath
    16. Georgi S. Popov, “Length spectrum invariants of Riemannian manifolds”, Math Z, 213:1 (1993), 311  crossref  mathscinet  zmath  isi
    17. Henrik Bruus, A. Douglas Stone, “Quantum chaos in a deformable billiard: Applications to quantum dots”, Phys Rev B, 50:24 (1994), 18275  crossref  isi
    18. Georgi Popov, “Invariants of the length spectrum and spectral invariants of planar convex domains”, Comm Math Phys, 161:2 (1994), 335  crossref  mathscinet  zmath
    19. M. B. Sevryuk, “Kam-stable Hamiltonians”, J Dyn Control Syst, 1:3 (1995), 351  crossref  mathscinet  zmath  elib
    20. M. B. Sevryuk, “The iteration-approximation decoupling in the reversible KAM theory”, Chaos, 5:3 (1995), 552  crossref  mathscinet  zmath  adsnasa  isi
    21. Leonid A. Bunimovich, “Variational principle for periodic trajectories of hyperbolic billiards”, Chaos, 5:2 (1995), 349  crossref  mathscinet  zmath  isi
    22. Edoh Y. Amiran, “Lazutkin coordinates and invariant curves for outer billiards”, J Math Phys (N Y ), 36:3 (1995), 1232  crossref  mathscinet  zmath
    23. Eugene Gutkin, Anatole Katok, “Caustics for inner and outer billiards”, Comm Math Phys, 173:1 (1995), 101  crossref  mathscinet  zmath
    24. Barbara Dietz, Uzy Smilansky, “Scattering from a square obstacle”, Physica D: Nonlinear Phenomena, 86:1-2 (1995), 34  crossref
    25. Vadim Zharnitsky, “Quasiperiodic Motion in the Billiard Problem with a Softened Boundary”, Phys. Rev. Lett, 75:24 (1995), 4393  crossref
    26. Edoh Y. Amiran, “Noncoincidence of geodesic lengths and hearing elliptic quantum billiards”, J Statist Phys, 85:3-4 (1996), 455  crossref  mathscinet  zmath
    27. Avram Hayli, “Numerical exploration of a family of strictly convex billiards with boundary of classC 2”, J Statist Phys, 83:1-2 (1996), 71  crossref  mathscinet  zmath
    28. N. Berglund, H. Kunz, “Integrability and ergodicity of classical billiards in a magnetic field”, J Statist Phys, 83:1-2 (1996), 81  crossref  mathscinet  zmath  adsnasa
    29. M. Jeng, O. Knill, “Billiards in the lp unit balls of the plane”, Chaos, Solitons & Fractals, 7:4 (1996), 543  crossref
    30. Hector E. Lomeli, “Perturbations of elliptic billiards”, Physica D: Nonlinear Phenomena, 99:1 (1996), 59  crossref
    31. M.B. Tabanov, “Veiled assonance between geodesics on ellipsoid and billiard in its focal ellipse”, Journal of Geometry and Physics, 19:4 (1996), 399  crossref
    32. Vadim Zharnitsky, “Quasiperiodic Motion in the Hamiltonian Systems of the Billiard Type”, Phys. Rev. Lett, 81:22 (1998), 4839  crossref
    33. Karl Friedrich Siburg, “Aubry-mather theory and the inverse spectral problem for planar convex domains”, Isr J Math, 113:1 (1999), 285  crossref  mathscinet  zmath  isi
    34. Holger R Dullin, Arnd Bäcker, Nonlinearity, 14:6 (2001), 1673  crossref  mathscinet  zmath  isi
    35. Gianluigi Del Magno, Nonlinearity, 14:6 (2001), 1761  crossref  mathscinet  zmath  isi
    36. Serge Tabachnikov, “Dual billiards in the hyperbolic plane*”, Nonlinearity, 15:4 (2002), 1051  crossref  mathscinet  zmath  isi  elib
    37. Christian Foltin, “Billiards with positive topological entropy”, Nonlinearity, 15:6 (2002), 2053  crossref  mathscinet  zmath  isi  elib
    38. Leonid Bunimovich, “Kinematics, equilibrium, and shape in Hamiltonian systems: The “LAB” effect”, Chaos, 13:3 (2003), 903  crossref  mathscinet  zmath  isi
    39. M. B. Sevryuk, “The classical KAM theory at the dawn of the twenty-first century”, Mosc. Math. J., 3:3 (2003), 1113–1144  mathnet  crossref  mathscinet  zmath
    40. J. Math. Sci. (N. Y.), 128:2 (2005), 2680–2685  mathnet  crossref  mathscinet
    41. Yuliy Baryshnikov, Wolfgang Parz, Vadim Zharnitsky, “Whispering Gallery Modes Inside Asymmetric Resonant Cavities”, Phys Rev Letters, 93:13 (2004), 133902  crossref  isi
    42. Maciej P. Wojtkowski, “Design of Hyperbolic Billiards”, Comm Math Phys, 273:2 (2007), 283  crossref  mathscinet  zmath  isi
    43. M J Dias Carneiro, S Oliffson Kamphorst, S Pinto-de-Carvalho, “Periodic orbits of generic oval billiards”, Nonlinearity, 20:10 (2007), 2453  crossref  mathscinet  zmath  isi
    44. L. A. Bunimovich, “Criterion of absolute focusing for focusing component of billiards”, Reg Chaot Dyn, 14:1 (2009), 42  crossref  mathscinet  isi
    45. Yi-Chiuan Chen, “On topological entropy of billiard tables with small inner scatterers”, Advances in Mathematics, 224:2 (2010), 432  crossref
    46. C. Bianca, “On the mathematical transport theory in microporous media: The billiard approach”, Nonlinear Analysis: Hybrid Systems, 4:4 (2010), 699  crossref
    47. Péter Bálint, Miklós Halász, Jorge A Hernández-Tahuilán, David P Sanders, “Chaos and stability in a two-parameter family of convex billiard tables”, Nonlinearity, 24:5 (2011), 1499  crossref
    48. E. A. Gutkin, “Dinamika billiarda: obzornaya statya s aktsentom na nereshennye zadachi”, Nelineinaya dinam., 7:3 (2011), 489–512  mathnet
    49. A. Neishtadt, A. Artemyev, “Destruction of Adiabatic Invariance for Billiards in a Strong Nonuniform Magnetic Field”, Phys. Rev. Lett, 108:6 (2012)  crossref
    50. Eugene Gutkin, “Billiard dynamics: An updated survey with the emphasis on open problems”, Chaos, 22:2 (2012), 026116  crossref
    51. SÔNIA PINTO-DE-CARVALHO, RAFAEL RAMÍREZ-ROS, “Non-persistence of resonant caustics in perturbed elliptic billiards”, Ergod. Th. Dynam. Sys, 2012, 1  crossref
    52. Roberto Markarian, S.O.liffson Kamphorst, Sônia Pinto-de-Carvalho, “Limit sets of convex non-elastic billiards”, Dynamical Systems, 27:2 (2012), 271  crossref
    53. B.-T. Nguyen, D. S. Grebenkov, “Localization of Laplacian Eigenfunctions in Circular, Spherical, and Elliptical Domains”, SIAM J. Appl. Math, 73:2 (2013), 780  crossref
    54. D. S. Grebenkov, B.-T. Nguyen, “Geometrical Structure of Laplacian Eigenfunctions”, SIAM Rev, 55:4 (2013), 601  crossref
    55. Jeong-Bo Shim, Alexander Eberspächer, Jan Wiersig, “Adiabatic formation of high-Qmodes by suppression of chaotic diffusion in deformed microdiscs”, New J. Phys, 15:11 (2013), 113058  crossref
    56. Zhihong Xia, Pengfei Zhang, “Homoclinic points for convex billiards”, Nonlinearity, 27:6 (2014), 1181  crossref
    57. Carlo Carminati, Stefano Marmi, David Sauzin, “There is only one KAM curve”, Nonlinearity, 27:9 (2014), 2035  crossref
    58. D.R.icardo da Costa, C.P.. Dettmann, E.D.. Leonel, “Circular, elliptic and oval billiards in a gravitational field”, Communications in Nonlinear Science and Numerical Simulation, 2014  crossref
    59. L.A.. Bunimovich, L.V.. Vela-Arevalo, “Some new surprises in chaos”, Chaos, 25:9 (2015), 097614  crossref
    60. M. Bialy, A. E. Mironov, “On fourth-degree polynomial integrals of the Birkhoff billiard”, Proc. Steklov Inst. Math., 295 (2016), 27–32  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    61. Lev Buhovsky, Vadim Kaloshin, “Nonisometric Domains with the Same MarviziMelrose Invariants”, Regul. Chaotic Dyn., 23:1 (2018), 54–59  mathnet  crossref
    62. Guan Khuan, V. Kaloshin, “Integriruemye deformatsii strogo vypuklykh integriruemykh billiardov prinadlezhat konechnomernym mnogoobraziyam”, Mosc. Math. J., 19:2 (2019), 307–327  mathnet  crossref
    63. Valery V. Kozlov, “Nonequilibrium Statistical Mechanics of Weakly Ergodic Systems”, Regul. Chaotic Dyn., 25:6 (2020), 674–688  mathnet  crossref  mathscinet
  •    .  Izvestiya: Mathematics
    Number of views:
    This page:1255
    Full text:346
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021