RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1973, Volume 37, Issue 2, Pages 356–385 (Mi izv2252)  

This article is cited in 14 scientific papers (total in 14 papers)

On $(p,l)$-capacity, inbedding theorems, and the spectrum of a selfadjoint elliptic operator

V. G. Maz'ya


Abstract: Necessary and sufficient conditions are found for continuity, compactness, and closability of imbedding operators of some function spaces into the space $L_p$. These results (for $p=2$) give criteria for positive definiteness and discreteness of the spectrum of the Dirichlet problem for a selfadjoint elliptic operator of arbitrary order. Some integral inequalities are considered for differentiable functions on a cube.

Full text: PDF file (2450 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1973, 7:2, 357–387

Bibliographic databases:

UDC: 513.88
MSC: Primary 46E35, 47F05; Secondary 35J40
Received: 20.03.1972

Citation: V. G. Maz'ya, “On $(p,l)$-capacity, inbedding theorems, and the spectrum of a selfadjoint elliptic operator”, Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973), 356–385; Math. USSR-Izv., 7:2 (1973), 357–387

Citation in format AMSBIB
\Bibitem{Maz73}
\by V.~G.~Maz'ya
\paper On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1973
\vol 37
\issue 2
\pages 356--385
\mathnet{http://mi.mathnet.ru/izv2252}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=338766}
\zmath{https://zbmath.org/?q=an:0256.35065}
\transl
\jour Math. USSR-Izv.
\yr 1973
\vol 7
\issue 2
\pages 357--387
\crossref{https://doi.org/10.1070/IM1973v007n02ABEH001942}


Linking options:
  • http://mi.mathnet.ru/eng/izv2252
  • http://mi.mathnet.ru/eng/izv/v37/i2/p356

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. I. Lizorkin, M. Otelbaev, “Imbedding theorems and compactness for spaces of Sobolev type with weights”, Math. USSR-Sb., 36:3 (1980), 331–349  mathnet  crossref  mathscinet  zmath  isi
    2. O. D. Apyshev, M. Otelbaev, “On the spectrum of a class of differential operators and some imbedding theorems”, Math. USSR-Izv., 15:1 (1980), 1–24  mathnet  crossref  mathscinet  zmath  isi
    3. I. D. Chueshov, “A remark on the Schrödinger operator with a highly singular potential”, Funct. Anal. Appl., 15:4 (1981), 310–311  mathnet  crossref  mathscinet  zmath  isi
    4. V. G. Maz'ya, T. O. Shaposhnikova, “Theory of multipliers in spaces of differentiable functions”, Russian Math. Surveys, 38:3 (1983), 23–95  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. A. Fraguela Collar, “On perturbation of a polyharmonic operator by delta-like potentials”, Math. USSR-Sb., 58:2 (1987), 389–396  mathnet  crossref  mathscinet  zmath
    6. Regina Kleine, “Warped products with discrete spectra”, Results. Math, 15:1-2 (1989), 81  crossref
    7. M. van den Berg, “On the spectral counting function for the Dirichlet Laplacian”, Journal of Functional Analysis, 107:2 (1992), 352  crossref
    8. N. N. Tarkhanov, “Approximation on compact sets by solutions of systems with surjective symbol”, Russian Math. Surveys, 48:5 (1993), 103–145  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. Guo Zhen Lu, “Potential Analysis on Carnot Groups, Part II: Relationship between Hausdorff Measures and Capacities”, Acta Math Sinica, 20:1 (2004), 25  crossref  mathscinet  zmath
    10. Vladimir Kondratiev, Vladimir Maz'ya, Mikhail Shubin, “Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators”, Communications in Partial Differential Equations, 29:3-4 (2005), 489  crossref
    11. Vladimir Kondratiev, Vladimir Maz'ya, Mikhail Shubin, “Gauge Optimization and Spectral Properties of Magnetic Schrödinger Operators”, Communications in Partial Differential Equations, 34:10 (2009), 1127  crossref  elib
    12. L. E. Fraenkel, “A lower bound for electrostatic capacity in the plane”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 88:3-4 (2011), 267  crossref
    13. K. N. Ospanov, “Discreteness and estimates of spectrum of a first order difference operator”, Eurasian Math. J., 9:2 (2018), 89–94  mathnet
    14. L. M. Mustafina, V. V. Zhurov, N. F. Abaeva, K. M. Akhmetov, “Raznostnye vesovye teoremy vlozheniya v odnom vyrozhdennom sluchae”, Mezhdunar. nauch.-issled. zhurn., 2018, no. 5(71), 18–24  mathnet  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:280
    Full text:74
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019