|
This article is cited in 3 scientific papers (total in 3 papers)
Sur les formules explicites de théorie des nombres
A. Weil
Abstract:
"Explicit formulas" in number theory express the sum of values of a function at the zeros of an $L$-series of an algebraic number field as a sum of local terms corresponding to all norms of this field. For the case of Hecke $L$-series, such formulas were found earlier by the author. In this paper they are derived for Artin–Hecke series corresponding to arbitrary finite-dimensional representations of the group $W_{k,K}$ – the standard extension of the idele class group of a global field $K$ using the Galois group of a finite extension $K/k$. In this connection it turns out that terms corresponding to archimedean and nonarchimedean norms can be written in unique form.
Full text:
PDF file (1788 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1972, 6:1, 1–17
Bibliographic databases:
UDC:
511
MSC: Primary 12A70; Secondary 12A85 Received: 15.06.1971
Language:
Citation:
A. Weil, “Sur les formules explicites de théorie des nombres”, Izv. Akad. Nauk SSSR Ser. Mat., 36:1 (1972), 3–18; Math. USSR-Izv., 6:1 (1972), 1–17
Citation in format AMSBIB
\Bibitem{Wei72}
\by A.~Weil
\paper Sur les formules explicites de th\'eorie des nombres
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1972
\vol 36
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/izv2289}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=379440}
\zmath{https://zbmath.org/?q=an:0245.12010}
\transl
\jour Math. USSR-Izv.
\yr 1972
\vol 6
\issue 1
\pages 1--17
\crossref{https://doi.org/10.1070/IM1972v006n01ABEH001866}
Linking options:
http://mi.mathnet.ru/eng/izv2289 http://mi.mathnet.ru/eng/izv/v36/i1/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. B. Venkov, “Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics”, Russian Math. Surveys, 34:3 (1979), 79–153
-
A. N. Parshin, “Notes on the Poisson formula”, St. Petersburg Math. J., 23:5 (2012), 781–818
-
T. Kleberger, B. Z. Moroz, “Weil groups and the distribution of prime ideals”, Proc. Steklov Inst. Math., 296 (2017), 132–141
|
Number of views: |
This page: | 478 | Full text: | 268 | References: | 37 | First page: | 1 |
|