RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1972, Volume 36, Issue 3, Pages 540–567 (Mi izv2312)  

This article is cited in 8 scientific papers (total in 8 papers)

Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains

G. M. Henkin


Abstract: Any bounded holomorphic function defined on an analytic closed submanifold in general position in a strictly pseudoconvex domain can be continued to a bounded holomorphic function in the entire domain.

Full text: PDF file (2316 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1972, 6:3, 536–563

Bibliographic databases:

UDC: 517.9
MSC: Primary 32A10; Secondary 32F15
Received: 08.12.1971

Citation: G. M. Henkin, “Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains”, Izv. Akad. Nauk SSSR Ser. Mat., 36:3 (1972), 540–567; Math. USSR-Izv., 6:3 (1972), 536–563

Citation in format AMSBIB
\Bibitem{Hen72}
\by G.~M.~Henkin
\paper Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1972
\vol 36
\issue 3
\pages 540--567
\mathnet{http://mi.mathnet.ru/izv2312}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=308444}
\zmath{https://zbmath.org/?q=an:0249.32009}
\transl
\jour Math. USSR-Izv.
\yr 1972
\vol 6
\issue 3
\pages 536--563
\crossref{https://doi.org/10.1070/IM1972v006n03ABEH001889}


Linking options:
  • http://mi.mathnet.ru/eng/izv2312
  • http://mi.mathnet.ru/eng/izv/v36/i3/p540

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Kadets, B. S. Mityagin, “Complemented subspaces in Banach spaces”, Russian Math. Surveys, 28:6 (1973), 77–95  mathnet  crossref  mathscinet  zmath
    2. G. M. Henkin, “The Lewy equation and analysis on pseudoconvex manifolds”, Russian Math. Surveys, 32:3 (1977), 59–130  mathnet  crossref  mathscinet  zmath
    3. P. L. Polyakov, “Extension of bounded holomorphic functions from an analytic curve in general position to a polydisk”, Funct. Anal. Appl., 17:3 (1983), 237–239  mathnet  crossref  mathscinet  zmath  isi
    4. Telemachos Hatziafratis, “An explicit extension formula of bounded holomorphic functions from analytic varieties to strictly convex domains”, Journal of Functional Analysis, 70:2 (1987), 289  crossref
    5. Telemachos Hatziafratis, “Integral representation formulas for differential forms on complex manifolds and applications to the 327-01327-01327-01-equation”, Annali di Matematica, 154:1 (1989), 327  crossref  mathscinet  zmath  isi
    6. Pierre Bonneau, Anne Cumenge, “Approximation d'operateurs d'extension minimale et de division”, Math Z, 207:1 (1991), 37  crossref  mathscinet  zmath  isi
    7. Joaquín M. Ortega, Joan Fàbrega, “Extension ofA t-jets from holomorphic submanifolds”, Math Z, 212:1 (1993), 637  crossref  mathscinet  zmath  isi
    8. R.F.. Shamoyan, O.R.. Mihić, “On Traces in Some Analytic Spaces in Bounded Strictly Pseudoconvex Domains”, Journal of Function Spaces, 2015 (2015), 1  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:188
    Full text:72
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020