Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1999, Volume 63, Issue 1, Pages 185–224 (Mi izv233)  

This article is cited in 5 scientific papers (total in 5 papers)

On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues

S. G. Tankeev

Vladimir State University

Abstract: Let $J$ be an absolutely simple Abelian variety over a number field $k$, $[k:\mathbb Q]<\infty$. Assume that $\operatorname{Cent}(\operatorname{End}(J\otimes\overline k))=\mathbb Z$. If the division $\mathbb Q$-algebra $\operatorname{End}^0(J\otimes\overline k)$ splits at a prime number $l$, then the $l$-adic representation is defined by the miniscule weights (microweights) of simple classical Lie algebras of types $A_m$, $B_m$$C_m$ or $D_m$.
If $S$ is a K3 surface over a sufficiently large number field $k\subset\mathbb C$ and the Hodge group $\operatorname{Hg}(S\otimes_k\mathbb C)$ is semisimple, then $S$ has ordinary reduction at each non-Archimedean place of $k$ in some set of Dirichlet density 1.
If $J$ is an absolutely simple Abelian threefold of type IV in Albert's classification over a sufficiently large number field, then $J$ has ordinary reduction at each place in some set of Dirichlet density 1.

DOI: https://doi.org/10.4213/im233

Full text: PDF file (3092 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1999, 63:1, 181–218

Bibliographic databases:

MSC: 14K15
Received: 20.07.1997

Citation: S. G. Tankeev, “On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues”, Izv. RAN. Ser. Mat., 63:1 (1999), 185–224; Izv. Math., 63:1 (1999), 181–218

Citation in format AMSBIB
\Bibitem{Tan99}
\by S.~G.~Tankeev
\paper On weights of the $l$-adic representation and arithmetic of Frobenius eigenvalues
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 1
\pages 185--224
\mathnet{http://mi.mathnet.ru/izv233}
\crossref{https://doi.org/10.4213/im233}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1701843}
\zmath{https://zbmath.org/?q=an:0955.14034}
\elib{https://elibrary.ru/item.asp?id=13330359}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 1
\pages 181--218
\crossref{https://doi.org/10.1070/im1999v063n01ABEH000233}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000081487100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746975882}


Linking options:
  • http://mi.mathnet.ru/eng/izv233
  • https://doi.org/10.4213/im233
  • http://mi.mathnet.ru/eng/izv/v63/i1/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vasiu A., “Some cases of the Mumford-Tate conjecture and Shimura varieties”, Indiana University Mathematics Journal, 57:1 (2008), 1–75  crossref  mathscinet  zmath  isi  scopus
    2. Bogomolov F., Hassett B., Tschinkel Yu., “Constructing Rational Curves on K3 Surfaces”, Duke Math J, 157:3 (2011), 535–550  crossref  mathscinet  zmath  isi  scopus
    3. Yu J.-D., “Special Lifts of Ordinary K3 Surfaces and Applications”, Pure Appl Math Q, 8:3 (2012), 805–824  mathscinet  isi  elib
    4. Xue J., Yu Ch.-F., “Abelian Varieties Without a Prescribed Newton Polygon Reduction”, Proc. Amer. Math. Soc., 143:6 (2015), PII S0002-9939(2015)12483-5, 2339–2345  crossref  mathscinet  zmath  isi  scopus
    5. Bloom S., “The Square Sieve and a Lang-Trotter Question For Generic Abelian Varieties”, J. Number Theory, 191 (2018), 119–157  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:359
    Full text:123
    References:55
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021