RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1973, Volume 37, Issue 5, Pages 1010–1037 (Mi izv2350)  

This article is cited in 9 scientific papers (total in 9 papers)

On some varieties of associative algebras

V. N. Latyshev


Abstract: A general method is given for proving that certain $T$-ideals are Spechtian. In particular, the $T$-ideal $T_1=\{[x_1,…,x_{n-2},[x_{n-1},x_n]]\}$ is shown to be Spechtian.

Full text: PDF file (2906 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1973, 7:5, 1011–1038

Bibliographic databases:

UDC: 512.7
MSC: Primary 16A38; Secondary 16A06, 16A68
Received: 12.10.1972

Citation: V. N. Latyshev, “On some varieties of associative algebras”, Izv. Akad. Nauk SSSR Ser. Mat., 37:5 (1973), 1010–1037; Math. USSR-Izv., 7:5 (1973), 1011–1038

Citation in format AMSBIB
\Bibitem{Lat73}
\by V.~N.~Latyshev
\paper On some varieties of associative algebras
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1973
\vol 37
\issue 5
\pages 1010--1037
\mathnet{http://mi.mathnet.ru/izv2350}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=327823}
\zmath{https://zbmath.org/?q=an:0282.16015}
\transl
\jour Math. USSR-Izv.
\yr 1973
\vol 7
\issue 5
\pages 1011--1038
\crossref{https://doi.org/10.1070/IM1973v007n05ABEH001988}


Linking options:
  • http://mi.mathnet.ru/eng/izv2350
  • http://mi.mathnet.ru/eng/izv/v37/i5/p1010

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Latyshev, “Konechnaya baziruemost tozhdestv nekotorykh kolets”, UMN, 32:4(196) (1977), 259–260  mathnet  mathscinet  zmath
    2. N. G. Nadzharyan, “On proper codimensions of $T$-ideals”, Russian Math. Surveys, 39:2 (1984), 179–180  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. Ya. Belov, “Counterexamples to the Specht problem”, Sb. Math., 191:3 (2000), 329–340  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. A. Ya. Belov, “No associative $PI$-algebra coincides with its commutant”, Siberian Math. J., 44:6 (2003), 969–980  mathnet  crossref  mathscinet  zmath  isi  elib
    5. A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. N. G. Nadzharyan, “Completely invariant subspaces of free algebras”, Uch. zapiski EGU, ser. Fizika i Matematika, 2011, no. 1, 64–65  mathnet
    7. O. V. Shashkov, “The join of varieties with associative-commutative intersection of bounded index”, Siberian Math. J., 56:3 (2015), 557–564  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. L. M. Samoilov, “On the Primality Property of Central Polynomials of Prime Varieties of Associative Algebras”, Math. Notes, 99:3 (2016), 413–416  mathnet  crossref  crossref  mathscinet  isi  elib
    9. KanelBelov A. Karasik Y. Rowen L., “Computational Aspects of Polynomial Identities: Vol 1, Kemer'S Theorems, 2Nd Edition”, Computational Aspects of Polynomial Identities: Vol 1, Kemer'S Theorems, 2Nd Edition, Monographs and Research Notes in Mathematics, 16, Crc Press-Taylor & Francis Group, 2016, 1–407  mathscinet  isi
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:279
    Full text:79
    References:39
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021