|
This article is cited in 26 scientific papers (total in 26 papers)
Cohomology of dynamical systems
A. N. Livshits
Abstract:
In this paper criteria for the cohomological nullity of functions on phase spaces of various dynamical systems (U-systems, topological Markov chains, Smale systems) with coefficients in certain groups are formulated and proved, and applications of these criteria are studied. (In the simplest case of a transformation $T\colon M\to M$, the cohomological nullity of a real function $f$ means that $f(x)=g(Tx)-g(x)$.)
Full text:
PDF file (2572 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1972, 6:6, 1278–1301
Bibliographic databases:
UDC:
517.9
MSC: Primary 58F99, 57F99; Secondary 34C20, 60J10 Received: 27.12.1971
Citation:
A. N. Livshits, “Cohomology of dynamical systems”, Izv. Akad. Nauk SSSR Ser. Mat., 36:6 (1972), 1296–1320; Math. USSR-Izv., 6:6 (1972), 1278–1301
Citation in format AMSBIB
\Bibitem{Liv72}
\by A.~N.~Livshits
\paper Cohomology of dynamical systems
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1972
\vol 36
\issue 6
\pages 1296--1320
\mathnet{http://mi.mathnet.ru/izv2373}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=334287}
\zmath{https://zbmath.org/?q=an:0252.58007}
\transl
\jour Math. USSR-Izv.
\yr 1972
\vol 6
\issue 6
\pages 1278--1301
\crossref{https://doi.org/10.1070/IM1972v006n06ABEH001919}
Linking options:
http://mi.mathnet.ru/eng/izv2373 http://mi.mathnet.ru/eng/izv/v36/i6/p1296
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271
-
William A. Veech, “Periodic points and invariant pseudomeasures for toral endomorphisms”, Ergod Th Dynam Sys, 6:3 (1986)
-
R. Llave, R. Moriyón, “Invariants for smooth conjugacy of hyperbolic dynamical systems. IV”, Comm Math Phys, 116:2 (1988), 185
-
Mahesh G. Nerurkar, “On the construction of smooth ergodic skew-products”, Ergod Th Dynam Sys, 8:2 (1988)
-
S. Hurder, A. Katok, “Differentiability, rigidity and Godbillon-Vey classes for Anosov flows”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 72:1 (1990), 5
-
Zaqueu Coelho, “On the asymptotic range of cocyles for shifts of finite type”, Ergod Th Dynam Sys, 13:2 (1993)
-
Anatole Katok, Ralf J. Spatzier, “First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 79:1 (1994), 131
-
William Parry, “Instances of cohomological triviality and rigidity”, Ergod Th Dynam Sys, 15:4 (1995)
-
S. V. Savchenko, “Cohomological Inequalities for Finite Topological Markov Chains”, Funct. Anal. Appl., 33:3 (1999), 236–238
-
Matthew Nicol, Ian Melbourne, Peter Ashwin, Nonlinearity, 14:2 (2001), 275
-
Mark Pollicott, Howard Weiss, “Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?)”, Commun. Math. Phys, 240:3 (2003), 457
-
J. AARONSON, M. DENKER, O. SARIG, R. ZWEIMÜLLER, “APERIODICITY OF COCYCLES AND CONDITIONAL LOCAL LIMIT THEOREMS”, Stoch. Dyn, 04:01 (2004), 31
-
D. I. Dolgopyat, “Averaging and invariant measures”, Mosc. Math. J., 5:3 (2005), 537–576
-
ALEXANDRE BARAVIERA, ARTUR O. LOPES, PHILIPPE THIEULLEN, “A LARGE DEVIATION PRINCIPLE FOR THE EQUILIBRIUM STATES OF HÖLDER POTENTIALS: THE ZERO TEMPERATURE CASE”, Stoch. Dyn, 06:01 (2006), 77
-
Martin Bridgeman, “Hausdorff dimension and the Weil–Petersson extension to quasifuchsian space”, Geom Topol, 14:2 (2010), 799
-
Boris Kalinin, “Livšic Theorem for matrix cocycles”, Ann. Math, 173:2 (2011), 1025
-
Boris Kalinin, Victoria Sadovskaya, “Cocycles with one exponent over partially hyperbolic systems”, Geom Dedicata, 2012
-
Victoria Sadovskaya, “Cohomology of $GL(2,\mathbb{R})$-valued cocycles over hyperbolic systems”, DCDS-A, 33:5 (2012), 2085
-
MARIO PONCE, “Hyperbolization of cocycles by isometries of the Euclidean space”, Ergod. Th. Dynam. Sys, 2012, 1
-
Andrés Navas, Mario Ponce, “A Livšic type theorem for germs of analytic diffeomorphisms”, Nonlinearity, 26:1 (2013), 297
-
A. SAMBARINO, “Hyperconvex representations and exponential growth”, Ergod. Th. Dynam. Sys, 2013, 1
-
Mickaël D. Chekroun Jean Roux, “Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator”, DCDS-A, 33:9 (2013), 3957
-
R. Cofré, B. Cessac, “Exact computation of the maximum-entropy potential of spiking neural-network models”, Phys. Rev. E, 89:5 (2014)
-
VICTORIA SADOVSKAYA, “Cohomology of fiber bunched cocycles over hyperbolic systems”, Ergod. Th. Dynam. Sys, 2014, 1
-
Maja Resman, “ε-neighbourhoods of orbits of parabolic diffeomorphisms and cohomological equations”, Nonlinearity, 27:12 (2014), 3005
-
A Arbieto, A Lopes, “Estimates of the derivative of the entropy of Gaussian thermostats”, Nonlinearity, 28:5 (2015), 1217
|
| Number of views: |
| This page: | 588 | | Full text: | 230 | | References: | 56 | | First page: | 1 |
|