RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1981, Volume 45, Issue 3, Pages 491–508 (Mi izv2378)  

This article is cited in 10 scientific papers (total in 10 papers)

On stochastic differential equations with boundary conditions in a half-plane

S. V. Anulova


Abstract: Existence theorems are proved for solutions of stochastic differential equations with boundary conditions in a Euclidean half-space. The existence of Markov processes with given characteristics in a half-space is deduced from these theorems. The case of discontinuous coefficients is included. The usual nondegeneracy condition for the normal component of diffusion near the boundary is replaced in part by the nondegeneracy of the jump component.
Bibliography: 15 titles.

Full text: PDF file (1653 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1982, 18:3, 423–437

Bibliographic databases:

UDC: 519.2
MSC: Primary 60H10, 60J25; Secondary 60H05
Received: 21.10.1977
Revised: 19.11.1980

Citation: S. V. Anulova, “On stochastic differential equations with boundary conditions in a half-plane”, Izv. Akad. Nauk SSSR Ser. Mat., 45:3 (1981), 491–508; Math. USSR-Izv., 18:3 (1982), 423–437

Citation in format AMSBIB
\Bibitem{Anu81}
\by S.~V.~Anulova
\paper On stochastic differential equations with boundary conditions in a~half-plane
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1981
\vol 45
\issue 3
\pages 491--508
\mathnet{http://mi.mathnet.ru/izv2378}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=623348}
\zmath{https://zbmath.org/?q=an:0489.60067|0462.60072}
\transl
\jour Math. USSR-Izv.
\yr 1982
\vol 18
\issue 3
\pages 423--437
\crossref{https://doi.org/10.1070/IM1982v018n03ABEH001393}


Linking options:
  • http://mi.mathnet.ru/eng/izv2378
  • http://mi.mathnet.ru/eng/izv/v45/i3/p491

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. A. Mikulyavichyus, “On the martingale problem”, Russian Math. Surveys, 37:6 (1982), 137–150  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Maria Giovanna Garroni, Jose Luis Menaldi, “Green's function and invariant density for an integro-differential operator of second order”, Annali di Matematica, 154:1 (1989), 147  crossref  mathscinet  zmath  isi
    3. M.G. Garroni, M.A. Vivaldi, “Quasilinear, parabolic, integro-differential problems with nonlinear oblique boundary conditions”, Nonlinear Analysis: Theory, Methods & Applications, 16:12 (1991), 1089  crossref
    4. Gao Ping, “The boundary harnack principle for some degenerate elliptic operators”, Communications in Partial Differential Equations, 18:12 (1993), 2001  crossref
    5. J. -L. Menaldi, M. Robin, “Ergodic control of reflected diffusions with jumps”, Appl Math Optim, 35:2 (1997), 117  crossref  mathscinet  zmath  isi
    6. José-Luis Menaldi, Luciano Tubaro, “Green and Poisson functions with Wentzell boundary conditions”, Journal of Differential Equations, 237:1 (2007), 77  crossref
    7. R. V. Shevchuk, “Inhomogeneous diffusion processes on a half-line with jumps on its boundary”, Theory Stoch. Process., 17(33):1 (2011), 119–129  mathnet  mathscinet  zmath
    8. B. I. Kopytko, R. V. Shevchuk, “On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition”, Theory Stoch. Process., 17(33):2 (2011), 55–70  mathnet  mathscinet  zmath
    9. Adrian Zălinescu, “Stochastic variational inequalities with jumps”, Stochastic Processes and their Applications, 2013  crossref
    10. A. Yu. Pilipenko, Yu. E. Prykhodko, “Limit behavior of a simple random walk with non-integrable jump from a barrier”, Theory Stoch. Process., 19(35):1 (2014), 52–61  mathnet  mathscinet  zmath
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:212
    Full text:98
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020