RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1970, Volume 34, Issue 4, Pages 827–848 (Mi izv2449)  

This article is cited in 5 scientific papers (total in 5 papers)

On the application of linear methods to polynomial approximation of solutions of ordinary differential equations and Hammerstein integral equations

V. K. Dzyadyk


Abstract: Starting from known linear polynomial operators $U_n(\psi;x)$ which generate good approximations to continuous functions $\psi(x)$, the author proposes a method which for a given right-hand side of the equation
\begin{equation} y'=f(x,y) \tag{1} \end{equation}
and given initial conditions enables us to construct polynomials $y_n(x)=y_n(U_n;f;x)$ approximating to the unknown solution of the equation (1) with essentially the same precision as these operators $U_n$ would yield if the solution were given. More precisely, it is shown in this paper that $|y(x)-y_n(U_n;f;x)|\leqslant(1+\alpha_n)\cdot C\|y(x)-U_n(y;x)\|$, $C=\operatorname{const}$, $\alpha_n\downarrow0$, and effective upper bounds are placed on the quantities $C$ and $\alpha_n$. The same procedure is used also for the polynomial approximation of the solutions of $k$-th order equations with $k\geqslant2$, systems of equations, Hamrnerstein integral equations and other integral equations.

Full text: PDF file (1773 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1970, 4:4, 835–858

Bibliographic databases:

UDC: 517.9
MSC: 41A10, 41A30, 45B05, 47A58, 34A45
Received: 29.09.1969

Citation: V. K. Dzyadyk, “On the application of linear methods to polynomial approximation of solutions of ordinary differential equations and Hammerstein integral equations”, Izv. Akad. Nauk SSSR Ser. Mat., 34:4 (1970), 827–848; Math. USSR-Izv., 4:4 (1970), 835–858

Citation in format AMSBIB
\Bibitem{Dzy70}
\by V.~K.~Dzyadyk
\paper On the application of linear methods to polynomial approximation of
solutions of ordinary differential equations and Hammerstein
integral equations
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1970
\vol 34
\issue 4
\pages 827--848
\mathnet{http://mi.mathnet.ru/izv2449}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0279367}
\zmath{https://zbmath.org/?q=an:0206.35001|0219.41014}
\transl
\jour Math. USSR-Izv.
\yr 1970
\vol 4
\issue 4
\pages 835--858
\crossref{https://doi.org/10.1070/IM1970v004n04ABEH000935}


Linking options:
  • http://mi.mathnet.ru/eng/izv2449
  • http://mi.mathnet.ru/eng/izv/v34/i4/p827

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. K. Dzyadyk, “The approximation method for approximating solutions of linear differential equations by algebraic polynomials”, Math. USSR-Izv., 8:4 (1974), 937–966  mathnet  crossref  mathscinet  zmath
    2. V. K. Dzyadyk, L. I. Filozof, “The rate of convergence of Padé approximants for some elementary functions”, Math. USSR-Sb., 35:5 (1979), 615–629  mathnet  crossref  mathscinet  zmath  isi
    3. N. P. Korneichuk, S. M. Nikol'skii, I. A. Shevchuk, “Vladislav Kirillovich Dzyadyk (on his sixtieth birthday)”, Russian Math. Surveys, 34:4 (1979), 213–221  mathnet  crossref  mathscinet  zmath
    4. V. K. Dzyadyk, “Asymptotics of diagonal Padé approximants of the functions $\sin z$, $\cos z$, $\operatorname{sinh}z$ and $\operatorname{cosh}z$”, Math. USSR-Sb., 36:2 (1980), 231–249  mathnet  crossref  mathscinet  zmath  isi
    5. G. A. Dzhanunts, Ya. E. Romm, “The varying piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative refinement”, Comput. Math. Math. Phys., 57:10 (2017), 1616–1634  mathnet  crossref  crossref  isi  elib  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:355
    Full text:98
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020