General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Izv. RAN. Ser. Mat.:

Personal entry:
Save password
Forgotten password?

Izv. Akad. Nauk SSSR Ser. Mat., 1968, Volume 32, Issue 5, Pages 1191–1219 (Mi izv2513)  

This article is cited in 15 scientific papers (total in 16 papers)

Algebraic curves over function fields. I

A. N. Parshin

Abstract: This paper studies the diophantine geometry of curves of genus greater than unity defined over a one-dimensional function field.

Full text: PDF file (2995 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1968, 2:5, 1145–1170

Bibliographic databases:

Document Type: Article
UDC: 513.6
MSC: 11G30, 11G35, 11G05, 11F46, 14H20
Received: 07.05.1968

Citation: A. N. Parshin, “Algebraic curves over function fields. I”, Izv. Akad. Nauk SSSR Ser. Mat., 32:5 (1968), 1191–1219; Math. USSR-Izv., 2:5 (1968), 1145–1170

Citation in format AMSBIB
\by A.~N.~Parshin
\paper Algebraic curves over function fields. I
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1968
\vol 32
\issue 5
\pages 1191--1219
\jour Math. USSR-Izv.
\yr 1968
\vol 2
\issue 5
\pages 1145--1170

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Arakelov, “Families of algebraic curves with fixed degeneracies”, Math. USSR-Izv., 5:6 (1971), 1277–1302  mathnet  crossref  mathscinet  zmath
    2. A. N. Parshin, “Minimal models of curves of genus 2 and homomorphisms of abelian varieties defined over a field of finite characteristic”, Math. USSR-Izv., 6:1 (1972), 65–108  mathnet  crossref  mathscinet  zmath
    3. Frans Oort, “Subvarieties of moduli spaces”, Invent math, 24:2 (1974), 95  crossref  mathscinet  zmath
    4. A. N. Rudakov, I. R. Shafarevich, “Inseparable morphisms of algebraic surfaces”, Math. USSR-Izv., 10:6 (1976), 1205–1237  mathnet  crossref  mathscinet  zmath
    5. Spencer Bloch, “The proof of the mordell conjecture”, Math Intelligencer, 6:2 (1984), 41  crossref  mathscinet  zmath
    6. R. C. Mason, “Norm form equations IV: Rational functions”, Mathematika, 33:2 (1986), 204  crossref  isi
    7. M. G. Zaidenberg, “Isotrivial families of curves on affine surfaces and characterization of the affine plane”, Math. USSR-Izv., 30:3 (1988), 503–532  mathnet  crossref  mathscinet  zmath
    8. Junjiro Noguchi, “Moduli spaces of holomorphic mappings into hyperbolically imbedded complex spaces and locally symmetric spaces”, Invent Math, 93:1 (1988), 15  crossref
    9. M. G. Zaidenberg, “A function-field analog of the Mordell conjecture: a noncompact version”, Math. USSR-Izv., 35:1 (1990), 61–81  mathnet  crossref  mathscinet  zmath
    10. A. N. Parshin, “On the application of ramified coverings in the theory of Diophantine equations”, Math. USSR-Sb., 66:1 (1990), 249–264  mathnet  crossref  mathscinet  zmath  isi
    11. Sheng-Li Tan, “On the invariants of base changes of pencils of curves, I”, manuscripta math, 84:1 (1994), 225  crossref  mathscinet  zmath
    12. Sheng-Li Tan, “On the invariants of base changes of pencils of curves, II”, Math Z, 222:1 (1996), 655  crossref  mathscinet  zmath  isi
    13. Khac Viet Nguyen, “On families of curves over 1 with small number of singular fibres”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:4 (1998), 459  crossref
    14. Hui Lan, “A Note on Height Inequality”, Comm. in Algebra, 34:4 (2006), 1205  crossref
    15. S. V. Vostokov, S. O. Gorchinskiy, A. B. Zheglov, Yu. G. Zarkhin, Yu. V. Nesterenko, D. O. Orlov, D. V. Osipov, V. L. Popov, A. G. Sergeev, I. R. Shafarevich, “Aleksei Nikolaevich Parshin (on his 70th birthday)”, Russian Math. Surveys, 68:1 (2013), 189–197  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    16. Marc Hindry, Amílcar Pacheco, “An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic”, Mosc. Math. J., 16:1 (2016), 45–93  mathnet  mathscinet
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:949
    Full text:244
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018