RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1967, Volume 31, Issue 1, Pages 3–14 (Mi izv2525)  

This article is cited in 10 scientific papers (total in 11 papers)

Boundary properties of arbitrary functions

E. P. Dolzhenko


Abstract: We study the dependence between various sets of limiting boundary values of an arbitrary function $f$ of $z$. In particular we show that the Plesner theorem on angular boundary values of analytic functions generalizes in a natural way to arbitrary functions.

Full text: PDF file (1247 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1967, 1:1, 1–12

Bibliographic databases:

UDC: 517.5
MSC: 30G25, 30E25
Received: 31.03.1965

Citation: E. P. Dolzhenko, “Boundary properties of arbitrary functions”, Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967), 3–14; Math. USSR-Izv., 1:1 (1967), 1–12

Citation in format AMSBIB
\Bibitem{Dol67}
\by E.~P.~Dolzhenko
\paper Boundary properties of arbitrary functions
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1967
\vol 31
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/izv2525}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0217297}
\zmath{https://zbmath.org/?q=an:0177.10604|0181.08102}
\transl
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1070/IM1967v001n01ABEH000543}


Linking options:
  • http://mi.mathnet.ru/eng/izv2525
  • http://mi.mathnet.ru/eng/izv/v31/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Plesner, “O povedenii analiticheskikh funktsii na granitse ikh oblasti opredeleniya”, UMN, 22:1(133) (1967), 125–136  mathnet  mathscinet
    2. Hidenobu Yoshida, “On the boundary behavior of holomorphic functions in the unit disc”, J Austral Math Soc, 21:1 (1976), 36  crossref  mathscinet  zmath
    3. Yu. V. Pomel'nikov, “Boundary uniqueness theorems for meromorphic functions”, Math. USSR-Sb., 61:2 (1988), 321–334  mathnet  crossref  mathscinet  zmath
    4. A. P. Petukhov, “On the dependence of the properties of the set of points of discontinuity of a function on the degree of its polynomial Hausdorff approximations”, Math. USSR-Sb., 67:2 (1990), 427–447  mathnet  crossref  mathscinet  zmath  isi
    5. Yu. A. Shevchenko, “On boundary behavior of typical mappings”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 623–638  mathnet  crossref  mathscinet  zmath  isi
    6. A. I. Ermakov, “Best Hausdorff approximations by algebraic polynomials and porosity”, Math. Notes, 59:5 (1996), 498–506  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Dorofeev M.A., “Kharakteristika mnozhestva osobykh tochek granitsy proizvolnoi funktsii dlya sluchaya kasatelnogo podkhoda”, Dokl. RAN, 424:6 (2009), 732–733  mathnet  mathscinet  elib
    8. K. F. Amozova, V. V. Starkov, “$\alpha$-dostizhimye oblasti, negladkii sluchai”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:3 (2013), 3–8  mathnet
    9. K. F. Amozova, “Dostatochnye usloviya alfa-dostizhimosti oblasti v negladkom sluchae”, Probl. anal. Issues Anal., 2(20):1 (2013), 3–13  mathnet  mathscinet  zmath
    10. A. N. Anikiev, “Plane domains with special cone condition”, Russian Math. (Iz. VUZ), 58:2 (2014), 62–63  mathnet  crossref
    11. A. I. Aptekarev, P. A. Borodin, B. S. Kashin, Yu. V. Nesterenko, P. V. Paramonov, A. V. Pokrovskii, A. G. Sergeev, A. T. Fomenko, “Evgenii Prokof'evich Dolzhenko (on his 80th birthday)”, Russian Math. Surveys, 69:6 (2014), 1143–1148  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:375
    Full text:137
    References:17
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019