RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1967, Volume 31, Issue 3, Pages 711–716 (Mi izv2560)  

This article is cited in 10 scientific papers (total in 10 papers)

On two-dimensional algebraic tori. II

V. E. Voskresenskii


Abstract: It is proven that two-dimensional algebraic tori are rational over their field of definition.

Full text: PDF file (609 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1967, 1:3, 691–696

Bibliographic databases:

UDC: 519.4
MSC: 14E05, 14E07, 14E25, 14H05, 14J26, 14Rxx
Received: 06.10.1966

Citation: V. E. Voskresenskii, “On two-dimensional algebraic tori. II”, Izv. Akad. Nauk SSSR Ser. Mat., 31:3 (1967), 711–716; Math. USSR-Izv., 1:3 (1967), 691–696

Citation in format AMSBIB
\Bibitem{Vos67}
\by V.~E.~Voskresenskii
\paper On two-dimensional algebraic tori. II
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1967
\vol 31
\issue 3
\pages 711--716
\mathnet{http://mi.mathnet.ru/izv2560}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=214597}
\zmath{https://zbmath.org/?q=an:0154.21003|0162.52502}
\transl
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 3
\pages 691--696
\crossref{https://doi.org/10.1070/IM1967v001n03ABEH000580}


Linking options:
  • http://mi.mathnet.ru/eng/izv2560
  • http://mi.mathnet.ru/eng/izv/v31/i3/p711

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. E. Voskresenskii, “Birational properties of linear algebraic groups”, Math. USSR-Izv., 4:1 (1970), 1–17  mathnet  crossref  mathscinet  zmath
    2. V. E. Voskresenskii, “On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $\mathbf Q(x_1,…,x_n)$”, Math. USSR-Izv., 4:2 (1970), 371–380  mathnet  crossref  mathscinet  zmath
    3. B. È. Kunyavskii, “On tori with a biquadratic splitting field”, Math. USSR-Izv., 12:3 (1978), 536–542  mathnet  crossref  mathscinet  zmath
    4. Mowaffaq Hajja, Ming-Chang Kang, “Finite group actions on rational function fields”, Journal of Algebra, 149:1 (1992), 139  crossref
    5. Hamza Ahmad, Mowaffaq Hajja, Ming-chang Kang, “Rationality of Some Projective Linear Actions”, Journal of Algebra, 228:2 (2000), 643  crossref
    6. Ming-Chang Kang, “Rationality problem of GL4 group actions”, Advances in Mathematics, 181:2 (2004), 321  crossref
    7. Ming-Chang Kang, “Some group actions onK(x 1 ,x 2 ,x 3 )”, Isr J Math, 146:1 (2005), 77  crossref  mathscinet  zmath  isi
    8. A.S.. Trepalin, “Rationality of the quotient of ℙ2 by finite group of automorphisms over arbitrary field of characteristic zero”, centr.eur.j.math, 2013  crossref
    9. Akinari Hoshi, Ming-chang Kang, Hidetaka Kitayama, “Quasi-monomial actions and some 4-dimensional rationality problems”, Journal of Algebra, 403 (2014), 363  crossref
    10. D. I. Koshelev, “Non-split toric codes”, Problems Inform. Transmission, 55:2 (2019), 124–144  mathnet  crossref  crossref  isi  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:298
    Full text:124
    References:35
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020