RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1967, Volume 31, Issue 6, Pages 1361–1378 (Mi izv2592)  

This article is cited in 9 scientific papers (total in 9 papers)

Representation of a tetrad

L. A. Nazarova


Abstract: A complete description is given herein of finitely generated torsionless modules over the ring
$$ A=\{(a_1,a_2,a_3,a_4)\mid a_i\in A_i,i=1,…,4, a_1\varepsilon_1=a_2\varepsilon_2=a_3\varepsilon_3=a_4\varepsilon_4\}, $$
where $A_1$, $A_2$, $A_3$, $A_4$ are local Dedekind rings with the same residue field $k$, and $\varepsilon_i$ is the homomorphism of $A_i$ onto $k$.

Full text: PDF file (1748 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1967, 1:6, 1305–1321

Bibliographic databases:

UDC: 519.49
MSC: 16Gxx, 13F05, 16D10
Received: 01.03.1967

Citation: L. A. Nazarova, “Representation of a tetrad”, Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967), 1361–1378; Math. USSR-Izv., 1:6 (1967), 1305–1321

Citation in format AMSBIB
\Bibitem{Naz67}
\by L.~A.~Nazarova
\paper Representation of a tetrad
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1967
\vol 31
\issue 6
\pages 1361--1378
\mathnet{http://mi.mathnet.ru/izv2592}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=223352}
\zmath{https://zbmath.org/?q=an:0222.16028}
\transl
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 6
\pages 1305--1321
\crossref{https://doi.org/10.1070/IM1967v001n06ABEH000619}


Linking options:
  • http://mi.mathnet.ru/eng/izv2592
  • http://mi.mathnet.ru/eng/izv/v31/i6/p1361

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Nazarova, A. V. Roiter, “Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$.”, Math. USSR-Izv., 3:1 (1978), 65–86  mathnet  crossref  mathscinet  zmath
    2. L. A. Nazarova, “Representations of quivers of infinite type”, Math. USSR-Izv., 7:4 (1973), 749–792  mathnet  crossref  mathscinet  zmath
    3. Sheila Brenner, “On four subspaces of a vector space”, Journal of Algebra, 29:3 (1974), 587  crossref
    4. Mark Kleiner, “Schur's Lemma for partially ordered sets of finite type”, Journal of Algebra, 88:2 (1984), 435  crossref
    5. A. G. Zavadskii, “Differentiation algorithm and classification of representations”, Math. USSR-Izv., 39:2 (1992), 975–1012  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. Meltzer H., “Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines”, Mem. Am. Math. Soc., 171:808 (2004), III+  isi
    7. S. A. Kruglyak, A. V. Roiter, “Locally Scalar Graph Representations in the Category of Hilbert Spaces”, Funct. Anal. Appl., 39:2 (2005), 91–105  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Yuliya P. Moskaleva, Yurii S. Samoilenko, “On Transitive Systems of Subspaces in a Hilbert Space”, SIGMA, 2 (2006), 042, 19 pp.  mathnet  crossref  mathscinet  zmath
    9. V. M. Bondarenko, N. M. Gubareni, M. A. Dokuchaev, V. V. Kirichenko, M. A. Khibina, “Representations of primitive posets”, J. Math. Sci., 164:1 (2010), 26–48  mathnet  crossref  mathscinet  elib
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:369
    Full text:102
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019