RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2008, Volume 72, Issue 1, Pages 183–224 (Mi izv2599)  

This article is cited in 18 scientific papers (total in 18 papers)

A version of van der Waerden's theorem and a proof of Mishchenko's conjecture on homomorphisms of locally compact groups

A. I. Shtern

M. V. Lomonosov Moscow State University

Abstract: van der Waerden proved in 1933 that every finite-dimensional locally bounded representation of a semisimple compact Lie group is automatically continuous. This theorem evoked an extensive literature, which related the assertion of the theorem (and its converse) to properties of Bohr compactifications of topological groups and led to the introduction and study of classes of so-called van der Waerden groups and algebras. In the present paper we study properties of (not necessarily continuous) locally relatively compact homomorphisms of topological groups (in particular, connected locally compact groups) from the point of view of this theorem and obtain a classification of homomorphisms of this kind from the point of view of their continuity or discontinuity properties (this classification is especially simple in the case of Lie groups because it turns out that every locally bounded finite-dimensional representation of a connected Lie group is continuous on the commutator subgroup). Our main results are obtained by studying new objects, namely, the discontinuity group and the final discontinuity group of a locally bounded homomorphism, and the new notion of a finally continuous homomorphism from one locally compact group into another.
The notion of local relative compactness of a homomorphism is naturally related to the notion of point oscillation (at the identity element of the group) introduced by the author in 2002. According to a conjecture of A. S. Mishchenko, the (reasonably defined) oscillation at a point of any finite-dimensional representation of a ‘good’ topological group can take one of only three values: $0$, $2$ and $\infty$. We shall prove this for all connected locally compact groups.

DOI: https://doi.org/10.4213/im2599

Full text: PDF file (765 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2008, 72:1, 169–205

Bibliographic databases:

UDC: 512.546+517.987
MSC: Primary 22D12; Secondary 22E30, 22E45
Received: 14.12.2006

Citation: A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture on homomorphisms of locally compact groups”, Izv. RAN. Ser. Mat., 72:1 (2008), 183–224; Izv. Math., 72:1 (2008), 169–205

Citation in format AMSBIB
\Bibitem{Sht08}
\by A.~I.~Shtern
\paper A version of van der Waerden's theorem and a proof of Mishchenko's
conjecture on homomorphisms of locally compact groups
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 1
\pages 183--224
\mathnet{http://mi.mathnet.ru/izv2599}
\crossref{https://doi.org/10.4213/im2599}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2394977}
\zmath{https://zbmath.org/?q=an:1158.22002}
\elib{http://elibrary.ru/item.asp?id=10336927}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 1
\pages 169--205
\crossref{https://doi.org/10.1070/IM2008v072n01ABEH002397}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000254303700009}
\elib{http://elibrary.ru/item.asp?id=13594342}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549156861}


Linking options:
  • http://mi.mathnet.ru/eng/izv2599
  • https://doi.org/10.4213/im2599
  • http://mi.mathnet.ru/eng/izv/v72/i1/p183

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Shtern A.I., “Connected Lie groups having faithful locally bounded (not necessarily continuous) finite-dimensional representations”, Russ. J. Math. Phys., 16:4 (2009), 566–567  crossref  zmath  isi  elib  scopus
    2. Shtern A.I., “Structure of finite-dimensional locally bounded finally precontinuous quasirepresentations of locally compact groups”, Russ. J. Math. Phys., 16:1 (2009), 133–138  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. A. I. Shtern, “Duality between compactness and discreteness beyond Pontryagin duality”, Proc. Steklov Inst. Math., 271 (2010), 212–227  mathnet  crossref  mathscinet  isi  elib
    4. Shtern A.I., “Almost periodic functions on connected locally compact groups”, Russ. J. Math. Phys., 17:4 (2010), 509–510  crossref  zmath  adsnasa  isi  elib  scopus
    5. Shtern A.I., “Von Neumann kernels of connected Lie groups, revisited and refined”, Russ. J. Math. Phys., 17:2 (2010), 262–266  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. A. I. Shtern, “The structure of homomorphisms of connected locally compact groups into compact groups”, Izv. Math., 75:6 (2011), 1279–1304  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. Shtern A.I., “Hochschild kernel for locally bounded finite-dimensional representations of a connected Lie group”, Appl. Math. Comput., 218:3 (2011), 1063–1066  crossref  mathscinet  zmath  isi  elib  scopus
    8. Shtern A.I., “Alternative proof of the Hochschild triviality theorem for a connected locally compact group”, Russ. J. Math. Phys., 18:1 (2011), 102–106  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. A. I. Shtern, “Connected locally compact groups: The Hochschild kernel and faithfulness of locally bounded finite-dimensional representations”, Trans. Moscow Math. Soc., 72 (2011), 79–95  mathnet  crossref  zmath  elib
    10. Shtern A.I., “Continuity conditions for finite-dimensional representations of connected locally compact groups”, Russ. J. Math. Phys., 19:4 (2012), 499–501  crossref  mathscinet  zmath  isi  elib  scopus
    11. A. I. Shtern, “The structure of locally bounded finite-dimensional representations of connected locally compact groups”, Sb. Math., 205:4 (2014), 600–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Shtern A.I., “Corrected Automatic Continuity Conditions for Finite-Dimensional Representations of Connected Lie Groups”, Russ. J. Math. Phys., 21:1 (2014), 133–134  crossref  mathscinet  zmath  isi  scopus
    13. A. I. Shtern, “A difference property for functions with bounded second differences on amenable topological groups”, J. Math. Sci., 213:2 (2016), 281–286  mathnet  crossref  mathscinet
    14. Shtern A.I., “a Freudenthal-Weil Theorem For Pro-Lie Groups”, Russ. J. Math. Phys., 22:4 (2015), 546–549  crossref  mathscinet  zmath  isi  scopus
    15. Shtern A.I., “Description of locally bounded pseudocharacters on almost connected locally compact groups”, Russ. J. Math. Phys., 23:4 (2016), 551–552  crossref  mathscinet  zmath  isi  scopus
    16. A. I. Shtern, “Specific properties of one-dimensional pseudorepresentations of groups”, J. Math. Sci., 233:5 (2018), 770–776  mathnet  crossref
    17. A. I. Shtern, “Locally bounded finally precontinuous finite-dimensional quasirepresentations of connected locally compact groups”, Sb. Math., 208:10 (2017), 1557–1576  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. Shtern A.I., “Irreducible Locally Bounded Finite-Dimensional Pseudorepresentations of Connected Locally Compact Groups”, Russ. J. Math. Phys., 25:2 (2018), 239–240  crossref  mathscinet  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:693
    Full text:129
    References:57
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019