|
This article is cited in 7 scientific papers (total in 7 papers)
Joint universality for periodic Hurwitz zeta-functions
A. Laurinčikasab a Vilnius University
b Institute of Mathematics and Informatics
Abstract:
We obtain a joint universality theorem of Voronin type for systems of periodic Hurwitz zeta-functions with parameters $\alpha_1,…,\alpha_r$ such that the system $\{\log(m+\alpha_j):j=1,…,r, m\in\mathbb{N}_0\}$ is linearly independent over the field of rational numbers.
DOI:
https://doi.org/10.4213/im2602
Full text:
PDF file (591 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2008, 72:4, 741–760
Bibliographic databases:
UDC:
511.33
MSC: 11M35 Received: 25.12.2006 Revised: 30.07.2007
Citation:
A. Laurinčikas, “Joint universality for periodic Hurwitz zeta-functions”, Izv. RAN. Ser. Mat., 72:4 (2008), 121–140; Izv. Math., 72:4 (2008), 741–760
Citation in format AMSBIB
\Bibitem{Lau08}
\by A.~Laurin{\v{c}}ikas
\paper Joint universality for periodic Hurwitz zeta-functions
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 4
\pages 121--140
\mathnet{http://mi.mathnet.ru/izv2602}
\crossref{https://doi.org/10.4213/im2602}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2452236}
\zmath{https://zbmath.org/?q=an:05488339}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..741L}
\elib{https://elibrary.ru/item.asp?id=11161433}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 4
\pages 741--760
\crossref{https://doi.org/10.1070/IM2008v072n04ABEH002421}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000259374600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349109425}
Linking options:
http://mi.mathnet.ru/eng/izv2602https://doi.org/10.4213/im2602 http://mi.mathnet.ru/eng/izv/v72/i4/p121
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Laurinčikas A., Skerstonaitė S., “A joint universality theorem for periodic Hurwitz zeta-functions. II”, Lith. Math. J., 49:3 (2009), 287–296
-
Genys J., Macaitiene R., Račkauskiene S., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions”, Math. Model. Anal., 15:4 (2010), 431–446
-
Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “Joint universality for zeta-functions of different types”, Chebyshevskii sb., 12:2 (2011), 192–203
-
Janulis K., Laurinčikas A., Macaitiene R., Siaučiūnas D., “Joint universality of Dirichlet $L$-functions and periodic Hurwitz zeta-functions”, Math. Model. Anal., 17:5 (2012), 673–685
-
Matsumoto K., “a Survey on the Theory of Universality For Zeta and l-Functions”, Number Theory: Plowing and Starring Through High Wave Forms, Series on Number Theory and Its Applications, 11, ed. Kaneko M. Kanemitsu S. Liu J., World Scientific Publ Co Pte Ltd, 2015, 95–144
-
A. Laurinčikas, L. Meška, “Modification of the Mishou theorem”, Chebyshevskii sb., 17:3 (2016), 135–147
-
Balciunas A., Garbaliauskiene V., Karaliunaite J., Macaitiene R., Petuskinaite J., Rimkeviciene A., “Joint Discrete Approximation of a Pair of Analytic Functions By Periodic Zeta-Functions”, Math. Model. Anal., 25:1 (2020), 71–87
|
Number of views: |
This page: | 251 | Full text: | 83 | References: | 36 | First page: | 4 |
|