RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2008, Volume 72, Issue 4, Pages 121–140 (Mi izv2602)  

This article is cited in 7 scientific papers (total in 7 papers)

Joint universality for periodic Hurwitz zeta-functions

A. Laurinčikasab

a Vilnius University
b Institute of Mathematics and Informatics

Abstract: We obtain a joint universality theorem of Voronin type for systems of periodic Hurwitz zeta-functions with parameters $\alpha_1,…,\alpha_r$ such that the system $\{\log(m+\alpha_j):j=1,…,r, m\in\mathbb{N}_0\}$ is linearly independent over the field of rational numbers.

DOI: https://doi.org/10.4213/im2602

Full text: PDF file (591 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2008, 72:4, 741–760

Bibliographic databases:

UDC: 511.33
MSC: 11M35
Received: 25.12.2006
Revised: 30.07.2007

Citation: A. Laurinčikas, “Joint universality for periodic Hurwitz zeta-functions”, Izv. RAN. Ser. Mat., 72:4 (2008), 121–140; Izv. Math., 72:4 (2008), 741–760

Citation in format AMSBIB
\Bibitem{Lau08}
\by A.~Laurin{\v{c}}ikas
\paper Joint universality for periodic Hurwitz zeta-functions
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 4
\pages 121--140
\mathnet{http://mi.mathnet.ru/izv2602}
\crossref{https://doi.org/10.4213/im2602}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2452236}
\zmath{https://zbmath.org/?q=an:05488339}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..741L}
\elib{https://elibrary.ru/item.asp?id=11161433}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 4
\pages 741--760
\crossref{https://doi.org/10.1070/IM2008v072n04ABEH002421}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000259374600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349109425}


Linking options:
  • http://mi.mathnet.ru/eng/izv2602
  • https://doi.org/10.4213/im2602
  • http://mi.mathnet.ru/eng/izv/v72/i4/p121

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Laurinčikas A., Skerstonaitė S., “A joint universality theorem for periodic Hurwitz zeta-functions. II”, Lith. Math. J., 49:3 (2009), 287–296  crossref  mathscinet  zmath  isi  scopus
    2. Genys J., Macaitiene R., Račkauskiene S., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions”, Math. Model. Anal., 15:4 (2010), 431–446  crossref  mathscinet  zmath  isi  scopus
    3. Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “Joint universality for zeta-functions of different types”, Chebyshevskii sb., 12:2 (2011), 192–203  mathnet  mathscinet
    4. Janulis K., Laurinčikas A., Macaitiene R., Siaučiūnas D., “Joint universality of Dirichlet $L$-functions and periodic Hurwitz zeta-functions”, Math. Model. Anal., 17:5 (2012), 673–685  crossref  mathscinet  zmath  isi  scopus
    5. Matsumoto K., “a Survey on the Theory of Universality For Zeta and l-Functions”, Number Theory: Plowing and Starring Through High Wave Forms, Series on Number Theory and Its Applications, 11, ed. Kaneko M. Kanemitsu S. Liu J., World Scientific Publ Co Pte Ltd, 2015, 95–144  mathscinet  zmath  isi
    6. A. Laurinčikas, L. Meška, “Modification of the Mishou theorem”, Chebyshevskii sb., 17:3 (2016), 135–147  mathnet  elib
    7. Balciunas A., Garbaliauskiene V., Karaliunaite J., Macaitiene R., Petuskinaite J., Rimkeviciene A., “Joint Discrete Approximation of a Pair of Analytic Functions By Periodic Zeta-Functions”, Math. Model. Anal., 25:1 (2020), 71–87  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:251
    Full text:83
    References:36
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021