|
This article is cited in 7 scientific papers (total in 7 papers)
Homology class of a Lagrangian Klein bottle
S. Yu. Nemirovskiab a Steklov Mathematical Institute, Russian Academy of Sciences
b Ruhr-Universität Bochum
Abstract:
It is shown that an embedded Lagrangian Klein bottle realises a non-zero
mod 2 homology class in a compact symplectic four-manifold $(X,\omega)$
such that $c_1(X,\omega)\cdot[\omega] > 0$.
Keywords:
Lagrangian embedding, totally real embedding, Luttinger surgery.
DOI:
https://doi.org/10.4213/im2639
Full text:
PDF file (515 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2009, 73:4, 689–698
Bibliographic databases:
UDC:
513.8+515.1
MSC: 57R17, 53D12, 32Q60 Received: 26.03.2007
Citation:
S. Yu. Nemirovski, “Homology class of a Lagrangian Klein bottle”, Izv. RAN. Ser. Mat., 73:4 (2009), 37–48; Izv. Math., 73:4 (2009), 689–698
Citation in format AMSBIB
\Bibitem{Nem09}
\by S.~Yu.~Nemirovski
\paper Homology class of a Lagrangian Klein bottle
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 4
\pages 37--48
\mathnet{http://mi.mathnet.ru/izv2639}
\crossref{https://doi.org/10.4213/im2639}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2583965}
\zmath{https://zbmath.org/?q=an:1191.57019}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..689N}
\elib{https://elibrary.ru/item.asp?id=20358688}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 4
\pages 689--698
\crossref{https://doi.org/10.1070/IM2009v073n04ABEH002462}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271211200003}
\elib{https://elibrary.ru/item.asp?id=15405873}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849116550}
Linking options:
http://mi.mathnet.ru/eng/izv2639https://doi.org/10.4213/im2639 http://mi.mathnet.ru/eng/izv/v73/i4/p37
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Shevchishin, “Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups”, Izv. Math., 73:4 (2009), 797–859
-
Nemirovski S., “Lagrangian Klein bottles in $\mathbb{R}^{2n}$”, Geom. Funct. Anal., 19:3 (2009), 902–909
-
Baykur R.I., Sunukjian N., “handles, logarithmic transforms and smooth 4-manifolds”, J. Topol., 6:1 (2013), 49–63
-
I. Castro, A. M. Lerma, “Clifford torus as a self-shrinker for the Lagrangian mean curvature flow”, Int. Math. Res. Notices, 2014, no. 6, 1515–1527
-
Damian M., “on the Topology of Monotone Lagrangian Submanifolds”, Ann. Sci. Ec. Norm. Super., 48:1 (2015), 237–252
-
Latschev J., “Fukaya'S Work on Lagrangian Embeddings”, Free Loop Spaces in Geometry and Topology, Irma Lectures in Mathematics and Theoretical Physics, eds. Latschev J., Oancea A., Eur. Math. Soc., 2015, 243–270
-
Shevchishin V., Smirnov G., “Symplectic Triangle Inequality”, Proc. Amer. Math. Soc., 148:4 (2020), 1389–1397
|
Number of views: |
This page: | 794 | Full text: | 176 | References: | 64 | First page: | 31 |
|