RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1999, Volume 63, Issue 5, Pages 37–82 (Mi izv265)  

This article is cited in 8 scientific papers (total in 8 papers)

The problem of general Radon representation for an arbitrary Hausdorff space

V. K. Zakharova, A. V. Mikhalevb

a St. Petersburg State University of Technology and Design
b M. V. Lomonosov Moscow State University

Abstract: After the fundamental work of Riesz, Radon and Hausdorff in the period 1909–1914, the following problem of general Radon representation emerged: for any Hausdorff space find the space of linear functionals that are integrally representable by Radon measures. In the early 1950s, a partial solution of this problem (the bijective version) for locally compact spaces was obtained by Halmos, Hewitt, Edwards, Bourbaki and others. For bounded Radon measures on a Tychonoff space, the problem of isomorphic Radon representation was solved in 1956 by Prokhorov.
In this paper we give a possible solution of the problem of general Radon representation. To do this, we use the family of metasemicontinuous functions with compact support and the class of thin functionals. We present bijective and isomorphic versions of the solution (Theorems 1 and 2 of § 2.5). To get the isomorphic version, we introduce the family of Radon bimeasures.

DOI: https://doi.org/10.4213/im265

Full text: PDF file (4794 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1999, 63:5, 881–921

Bibliographic databases:

MSC: 28A25, 28C05
Received: 19.12.1997

Citation: V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space”, Izv. RAN. Ser. Mat., 63:5 (1999), 37–82; Izv. Math., 63:5 (1999), 881–921

Citation in format AMSBIB
\Bibitem{ZakMik99}
\by V.~K.~Zakharov, A.~V.~Mikhalev
\paper The problem of general Radon representation for an arbitrary Hausdorff space
\jour Izv. RAN. Ser. Mat.
\yr 1999
\vol 63
\issue 5
\pages 37--82
\mathnet{http://mi.mathnet.ru/izv265}
\crossref{https://doi.org/10.4213/im265}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1727590}
\zmath{https://zbmath.org/?q=an:0967.28012}
\transl
\jour Izv. Math.
\yr 1999
\vol 63
\issue 5
\pages 881--921
\crossref{https://doi.org/10.1070/im1999v063n05ABEH000265}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000085381600002}


Linking options:
  • http://mi.mathnet.ru/eng/izv265
  • https://doi.org/10.4213/im265
  • http://mi.mathnet.ru/eng/izv/v63/i5/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space. II”, Izv. Math., 66:6 (2002), 1087–1101  mathnet  crossref  crossref  mathscinet  zmath
    2. V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Proc. Steklov Inst. Math., 248 (2005), 101–110  mathnet  mathscinet  zmath
    3. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Russian Math. Surveys, 65:4 (2010), 741–765  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of Radon integrals as linear functionals”, J. Math. Sci., 185:2 (2012), 233–281  mathnet  crossref  mathscinet
    5. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The characterization of integrals with respect to arbitrary Radon measures by the boundedness indices”, J. Math. Sci., 185:3 (2012), 417–429  mathnet  crossref
    6. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Descriptive spaces and proper classes of functions”, J. Math. Sci., 213:2 (2016), 163–200  mathnet  crossref  mathscinet
    7. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Postclassical families of functions proper for descriptive and prescriptive spaces”, J. Math. Sci., 221:3 (2017), 360–383  mathnet  crossref  mathscinet
    8. Machsoudi S. Rejali A., “on the Dual of Certain Locally Convex Function Spaces”, Bull. Iran Math. Soc., 41:4 (2015), 1003–1017  mathscinet  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:261
    Full text:86
    References:39
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019