RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 2, Pages 5–64 (Mi izv2659)  

Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm

S. K. Bagdasarov

Parametric Technology Corporation, Needham, MA, USA

Abstract: We find the general solution and describe the structural properties of extremal functions of the Kolmogorov problem $\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}\to\sup$, $f\in W^rH^\omega(\mathbb I)$, $\|f\|_{\mathbb L_p(\mathbb I)}\le B$, for all $r,m\in\mathbb Z$, $0\le m\le r$, all $p$, $1\le p<\infty$, concave moduli of continuity $\omega$, all positive $B$ and $\mathbb I=\mathbb R$ or $\mathbb{I}=\mathbb R_+$, where $W^rH^\omega(\mathbb I)$ is the class of functions whose $r$th derivatives have modulus of continuity majorized by $\omega$. We also obtain sharp constants in the additive (and multiplicative in the case of Hölder classes) inequalities for the norms $\|f^{(m)}\|_{\mathbb L_\infty(\mathbb I)}$ of the derivatives of functions $f\in W^rH^\omega(\mathbb I)$ with finite norm $\|f^{(r)}\|_{\mathbb L_p(\mathbb I)}$. We also investigate some properties of extremal functions in the special case $r=1$ (such as the property of being compactly supported) and obtain inequalities between the knots of the corresponding $\omega$-splines. In the case of the Hölder moduli of continuity $\omega(t)=t^\alpha$, we find that the lengths of the intervals between the knots of extremal $\omega$-splines decrease in geometric progression while the graphs of the solutions exhibit the fractal property of self-similarity.

Keywords: Kolmogorov–Landau inequalities, moduli of continuity.

DOI: https://doi.org/10.4213/im2659

Full text: PDF file (1143 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:2, 219–279

Bibliographic databases:

UDC: 517.988
MSC: 41A17, 41A44, 26A16, 26D10, 58C30, 90C30
Received: 07.05.2007
Revised: 14.05.2008

Citation: S. K. Bagdasarov, “Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm”, Izv. RAN. Ser. Mat., 74:2 (2010), 5–64; Izv. Math., 74:2 (2010), 219–279

Citation in format AMSBIB
\Bibitem{Bag10}
\by S.~K.~Bagdasarov
\paper Kolmogorov inequalities for functions in classes $W^rH^\omega$ with bounded $\mathbb L_p$-norm
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 2
\pages 5--64
\mathnet{http://mi.mathnet.ru/izv2659}
\crossref{https://doi.org/10.4213/im2659}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2675268}
\zmath{https://zbmath.org/?q=an:1202.41007}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..219B}
\elib{http://elibrary.ru/item.asp?id=20358715}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 2
\pages 219--279
\crossref{https://doi.org/10.1070/IM2010v074n02ABEH002486}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000277164200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953831797}


Linking options:
  • http://mi.mathnet.ru/eng/izv2659
  • https://doi.org/10.4213/im2659
  • http://mi.mathnet.ru/eng/izv/v74/i2/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:443
    Full text:101
    References:56
    First page:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019