|
This article is cited in 6 scientific papers (total in 6 papers)
Minimal Gromov–Witten rings
V. V. Przyjalkowski Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We construct an abstract theory of Gromov–Witten invariants of genus 0
for quantum minimal Fano varieties (a minimal class of varieties
which is natural from the quantum cohomological viewpoint).
Namely, we consider the minimal Gromov–Witten ring: a commutative
algebra whose generators and relations are of the form used in the
Gromov–Witten theory of Fano varieties (of unspecified dimension).
The Gromov–Witten theory of any quantum minimal variety is
a homomorphism from this ring to $\mathbb C$. We prove an abstract
reconstruction theorem which says that this ring is isomorphic
to the free commutative ring generated by ‘prime two-pointed
invariants’. We also find solutions of the differential equation
of type $DN$ for a Fano variety of dimension $N$ in terms
of the generating series of one-pointed Gromov–Witten invariants.
DOI:
https://doi.org/10.4213/im2664
Full text:
PDF file (621 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2008, 72:6, 1253–1272
Bibliographic databases:
UDC:
512.772
MSC: 53D45, 14J45, 14N35 Received: 14.05.2007
Citation:
V. V. Przyjalkowski, “Minimal Gromov–Witten rings”, Izv. RAN. Ser. Mat., 72:6 (2008), 203–222; Izv. Math., 72:6 (2008), 1253–1272
Citation in format AMSBIB
\Bibitem{Prz08}
\by V.~V.~Przyjalkowski
\paper Minimal Gromov--Witten rings
\jour Izv. RAN. Ser. Mat.
\yr 2008
\vol 72
\issue 6
\pages 203--222
\mathnet{http://mi.mathnet.ru/izv2664}
\crossref{https://doi.org/10.4213/im2664}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2489488}
\zmath{https://zbmath.org/?q=an:1158.53070}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72.1253P}
\elib{https://elibrary.ru/item.asp?id=12143209}
\transl
\jour Izv. Math.
\yr 2008
\vol 72
\issue 6
\pages 1253--1272
\crossref{https://doi.org/10.1070/IM2008v072n06ABEH002434}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000262990700006}
\elib{https://elibrary.ru/item.asp?id=13572883}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349120566}
Linking options:
http://mi.mathnet.ru/eng/izv2664https://doi.org/10.4213/im2664 http://mi.mathnet.ru/eng/izv/v72/i6/p203
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Przyjalkowski V., “On Landau-Ginzburg models for Fano varieties”, Communications in Number Theory and Physics, 1:4 (2007), 713–728
-
Nathan Owen Ilten, Jacob Lewis, Victor Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, Journal of Algebra, 374 (2013), 104
-
V. V. Przyjalkowski, “Weak Landau–Ginzburg models for smooth Fano threefolds”, Izv. Math., 77:4 (2013), 772–794
-
V. V. Przyjalkowski, C. A. Shramov, “Laurent phenomenon for Landau–Ginzburg models of complete intersections in Grassmannians”, Proc. Steklov Inst. Math., 290:1 (2015), 91–102
-
V. V. Golyshev, D. Zagier, “Proof of the gamma conjecture for Fano 3-folds of Picard rank 1”, Izv. Math., 80:1 (2016), 24–49
-
V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118
|
Number of views: |
This page: | 404 | Full text: | 100 | References: | 32 | First page: | 10 |
|