|
This article is cited in 3 scientific papers (total in 3 papers)
The eigenvalue function of a family of Sturm–Liouville operators
T. N. Harutyunyan Yerevan State University
Abstract:
We define a function $\mu^-(\gamma)$ in such a way that its value at every point
$\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,…$,
coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville
problem $-y"+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$,
$y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha {\in} (0,\pi]$).
We find necessary and sufficient conditions for a function to have
this property for a real $q\in L^1[0,\pi]$.
Keywords:
Sturm–Liouville problem, eigenvalue function, inverse problem.
DOI:
https://doi.org/10.4213/im2669
Full text:
PDF file (559 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2010, 74:3, 439–459
Bibliographic databases:
UDC:
517.9
MSC: 34A55, 34B20, 34E99, 34L99, 35Q99, 37A30, 47E05, 58C40 Received: 25.05.2007 Revised: 07.04.2008
Citation:
T. N. Harutyunyan, “The eigenvalue function of a family of Sturm–Liouville operators”, Izv. RAN. Ser. Mat., 74:3 (2010), 3–22; Izv. Math., 74:3 (2010), 439–459
Citation in format AMSBIB
\Bibitem{Har10}
\by T.~N.~Harutyunyan
\paper The eigenvalue function of a family of Sturm--Liouville operators
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 3--22
\mathnet{http://mi.mathnet.ru/izv2669}
\crossref{https://doi.org/10.4213/im2669}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682369}
\zmath{https://zbmath.org/?q=an:1202.34148}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..439A}
\elib{https://elibrary.ru/item.asp?id=20425206}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 439--459
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002493}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049332179}
Linking options:
http://mi.mathnet.ru/eng/izv2669https://doi.org/10.4213/im2669 http://mi.mathnet.ru/eng/izv/v74/i3/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Yu. A. Ashrafyan, T. N. Harutyunyan, “Inverse Sturm-Liouville problems with fixed boundary conditions”, Electron. J. Differential Equations, 2015, 27, 8 pp.
-
Harutyunyan T., “Uniqueness Theorem For the Eigenvalues' Function”, Lobachevskii J. Math., 40:8, SI (2019), 1079–1083
-
Harutyunyan T., “the Eigenvalues' Function of the Family of Sturm-Liouville Operators and the Inverse Problems”, Tamkang J. Math., 50:3, SI (2019), 233–252
|
Number of views: |
This page: | 603 | Full text: | 145 | References: | 212 | First page: | 27 |
|