RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 3–22 (Mi izv2669)  

This article is cited in 1 scientific paper (total in 1 paper)

The eigenvalue function of a family of Sturm–Liouville operators

T. N. Harutyunyan

Yerevan State University

Abstract: We define a function $\mu^-(\gamma)$ in such a way that its value at every point $\gamma\in(-\infty,\pi)$, $\gamma=\beta-\pi n$, $\beta\in[0,\pi)$, $n=0,1,2,…$, coincides with an eigenvalue $\mu_n(\alpha,\beta)$ of the Sturm–Liouville problem $-y"+q(x)y=\mu y$, $y(0)\cos\alpha+y'(0)\sin\alpha=0$, $y(\pi)\cos\beta+y'(\pi)\sin\beta=0$ (for some $\alpha {\in} (0,\pi]$). We find necessary and sufficient conditions for a function to have this property for a real $q\in L^1[0,\pi]$.

Keywords: Sturm–Liouville problem, eigenvalue function, inverse problem.

DOI: https://doi.org/10.4213/im2669

Full text: PDF file (559 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 439–459

Bibliographic databases:

UDC: 517.9
MSC: 34A55, 34B20, 34E99, 34L99, 35Q99, 37A30, 47E05, 58C40
Received: 25.05.2007
Revised: 07.04.2008

Citation: T. N. Harutyunyan, “The eigenvalue function of a family of Sturm–Liouville operators”, Izv. RAN. Ser. Mat., 74:3 (2010), 3–22; Izv. Math., 74:3 (2010), 439–459

Citation in format AMSBIB
\Bibitem{Har10}
\by T.~N.~Harutyunyan
\paper The eigenvalue function of a family of Sturm--Liouville operators
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 3--22
\mathnet{http://mi.mathnet.ru/izv2669}
\crossref{https://doi.org/10.4213/im2669}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682369}
\zmath{https://zbmath.org/?q=an:1202.34148}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..439A}
\elib{http://elibrary.ru/item.asp?id=20425206}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 439--459
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002493}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049332179}


Linking options:
  • http://mi.mathnet.ru/eng/izv2669
  • https://doi.org/10.4213/im2669
  • http://mi.mathnet.ru/eng/izv/v74/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. A. Ashrafyan, T. N. Harutyunyan, “Inverse Sturm-Liouville problems with fixed boundary conditions”, Electron. J. Differential Equations, 2015, 27, 8 pp.  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:543
    Full text:110
    References:209
    First page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019