Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 103–156 (Mi izv2687)  

This article is cited in 1 scientific paper (total in 1 paper)

A family of categories of log terminal pairs and automorphisms of surfaces

Yu. M. Polyakova

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: Building upon two-dimensional log terminal Mori theory, we develop categorical techniques that enable us to describe groups of biregular automorphisms of a complex quasi-projective surface with log terminal singularities using the biregular automorphism groups of its compactifications.

Keywords: categories, biregular automorphisms, birational maps, links, log terminal singularities, Ore condition.

DOI: https://doi.org/10.4213/im2687

Full text: PDF file (857 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 541–593

Bibliographic databases:

UDC: 512.7
MSC: 14E30, 14R20, 14E07, 14J50, 18A32, 14E05
Received: 18.06.2007
Revised: 18.08.2009

Citation: Yu. M. Polyakova, “A family of categories of log terminal pairs and automorphisms of surfaces”, Izv. RAN. Ser. Mat., 74:3 (2010), 103–156; Izv. Math., 74:3 (2010), 541–593

Citation in format AMSBIB
\Bibitem{Pol10}
\by Yu.~M.~Polyakova
\paper A family of categories of log terminal pairs and automorphisms of surfaces
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 103--156
\mathnet{http://mi.mathnet.ru/izv2687}
\crossref{https://doi.org/10.4213/im2687}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682374}
\zmath{https://zbmath.org/?q=an:1219.14016}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..541P}
\elib{https://elibrary.ru/item.asp?id=20425211}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 541--593
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002498}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100006}
\elib{https://elibrary.ru/item.asp?id=16980836}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049328124}


Linking options:
  • http://mi.mathnet.ru/eng/izv2687
  • https://doi.org/10.4213/im2687
  • http://mi.mathnet.ru/eng/izv/v74/i3/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Dubouloz, S. Lamy, “Automorphisms of open surfaces with irreducible boundary”, Osaka J. Math., 52:3 (2015), 747–791  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:301
    Full text:91
    References:23
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021