Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 169–224 (Mi izv2689)  

Extremal problems for integrals of non-negative functions

A. I. Stepanets, A. L. Shidlich

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: We study the numbers $e_\sigma(f)$ that characterize the best approximation of the integrals of functions in $L_p(A,d\mu)$, $p>0$, by integrals of rank $\sigma$. We find exact values and orders as $\sigma\to\infty$ for the least upper bounds of these numbers on the classes of functions representable as products of a fixed non-negative function and functions in the unit ball $U_p(A)$ of $L_p(A,d\mu)$. The numbers $e_\sigma( \cdot )$ are used to obtain necessary and sufficient conditions for an arbitrary function in $L_p(A,d\mu)$ to lie in $L_s(A,d\mu)$, $0<p,s<\infty$. We discuss applications of the results obtained to the approximation of measurable functions (given by convolutions with summable kernels) by entire functions of exponential type.

Keywords: best approximations of integrals by integrals of finite rank, absolute convergence of integrals.

DOI: https://doi.org/10.4213/im2689

Full text: PDF file (865 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 607–660

Bibliographic databases:

UDC: 517.5
MSC: 41A50
Received: 28.06.2007
Revised: 23.03.2009

Citation: A. I. Stepanets, A. L. Shidlich, “Extremal problems for integrals of non-negative functions”, Izv. RAN. Ser. Mat., 74:3 (2010), 169–224; Izv. Math., 74:3 (2010), 607–660

Citation in format AMSBIB
\Bibitem{SteShi10}
\by A.~I.~Stepanets, A.~L.~Shidlich
\paper Extremal problems for integrals of non-negative functions
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 169--224
\mathnet{http://mi.mathnet.ru/izv2689}
\crossref{https://doi.org/10.4213/im2689}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682376}
\zmath{https://zbmath.org/?q=an:1200.41031}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..607S}
\elib{https://elibrary.ru/item.asp?id=20425213}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 607--660
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002500}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100008}
\elib{https://elibrary.ru/item.asp?id=17148532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049342594}


Linking options:
  • http://mi.mathnet.ru/eng/izv2689
  • https://doi.org/10.4213/im2689
  • http://mi.mathnet.ru/eng/izv/v74/i3/p169

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:574
    Full text:129
    References:59
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021