RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 65–78 (Mi izv2728)  

This article is cited in 3 scientific papers (total in 3 papers)

Mixed volume forms and a complex equation of Monge–Ampère type on Kähler manifolds of positive curvature

V. N. Kokarev

Samara State University

Abstract: We consider a generalization of the Calabi problem. In the analytic set-up on a Kähler manifold, it leads to a complex Monge–Ampère equation containing the mixed discriminant of the given and unknown metrics. We obtain sufficient conditions for its solubility in the case when the Kähler manifold is $\delta$-pinched ($\delta>1/2$).

Keywords: Kähler manifold, Monge–Ampère equation.

DOI: https://doi.org/10.4213/im2728

Full text: PDF file (565 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 501–514

Bibliographic databases:

UDC: 514.772
MSC: 32W20, 32Q15
Received: 14.09.2007

Citation: V. N. Kokarev, “Mixed volume forms and a complex equation of Monge–Ampère type on Kähler manifolds of positive curvature”, Izv. RAN. Ser. Mat., 74:3 (2010), 65–78; Izv. Math., 74:3 (2010), 501–514

Citation in format AMSBIB
\Bibitem{Kok10}
\by V.~N.~Kokarev
\paper Mixed volume forms and a complex equation of Monge--Amp\`ere type on K\"ahler manifolds of positive curvature
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 65--78
\mathnet{http://mi.mathnet.ru/izv2728}
\crossref{https://doi.org/10.4213/im2728}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682372}
\zmath{https://zbmath.org/?q=an:1200.32015}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..501K}
\elib{http://elibrary.ru/item.asp?id=20425209}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 501--514
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002496}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100004}
\elib{http://elibrary.ru/item.asp?id=16976510}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049327807}


Linking options:
  • http://mi.mathnet.ru/eng/izv2728
  • https://doi.org/10.4213/im2728
  • http://mi.mathnet.ru/eng/izv/v74/i3/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Dinew, S. Kołodziej, “A priori estimates for complex Hessian equations”, Anal. PDE, 7:1 (2014), 227–244  crossref  mathscinet  zmath  isi  scopus
    2. Valentino Tosatti, Yu Wang, Ben Weinkove, Xiaokui Yang, “$C^{2,\alpha}$ estimates for nonlinear elliptic equations in complex and almost complex geometry”, Calc. Var. Partial Differential Equations, 54:1 (2015), 431–453  crossref  mathscinet  zmath  isi  scopus
    3. Tosatti V., Weinkove B., “The Monge-Ampère equation for $(n-1)$-plurisubharmonic functions on a compact Kähler manifold”, J. Am. Math. Soc., 30:2 (2017), 311–346  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:372
    Full text:77
    References:32
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019