Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2009, Volume 73, Issue 4, Pages 3–16 (Mi izv2741)  

This article is cited in 6 scientific papers (total in 6 papers)

Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$

K. A. Bekmaganbetova, E. D. Nursultanovab

a Kazakhstan Branch of Lomonosov Moscow State University
b L. N. Gumilev Eurasian National University

Abstract: We study the anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$ and obtain limit embedding theorems for them.

Keywords: Lorentz space, Besov space, embedding theorem, trace theorem.

DOI: https://doi.org/10.4213/im2741

Full text: PDF file (554 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2009, 73:4, 655–668

Bibliographic databases:

UDC: 517.51
MSC: 46E35
Received: 29.10.2007
Revised: 21.02.2008

Citation: K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$”, Izv. RAN. Ser. Mat., 73:4 (2009), 3–16; Izv. Math., 73:4 (2009), 655–668

Citation in format AMSBIB
\Bibitem{BekNur09}
\by K.~A.~Bekmaganbetov, E.~D.~Nursultanov
\paper Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 4
\pages 3--16
\mathnet{http://mi.mathnet.ru/izv2741}
\crossref{https://doi.org/10.4213/im2741}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2583963}
\zmath{https://zbmath.org/?q=an:1187.46025}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..655B}
\elib{https://elibrary.ru/item.asp?id=20358686}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 4
\pages 655--668
\crossref{https://doi.org/10.1070/IM2009v073n04ABEH002460}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271211200001}
\elib{https://elibrary.ru/item.asp?id=15308583}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956035350}


Linking options:
  • http://mi.mathnet.ru/eng/izv2741
  • https://doi.org/10.4213/im2741
  • http://mi.mathnet.ru/eng/izv/v73/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Dyachenko, “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59  mathnet  mathscinet  zmath
    2. K. A. Bekmaganbetov, Ye. Toleugazy, “Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space”, Eurasian Math. J., 7:3 (2016), 8–16  mathnet  mathscinet
    3. Toleugazy Y., “Embedding Theorems, Theorems of a Trace and Approach For Anisotropic B-PR(Alpha Q) (T-D) Nikol'Skii-Besov Spaces”, Bull. Karaganda Univ-Math., 84:4 (2016), 146–154  isi
    4. Wishart J.R., “Smooth Hyperbolic Wavelet Deconvolution With Anisotropic Structure”, Electron. J. Stat., 13:1 (2019), 1694–1716  crossref  isi
    5. Sadykova K.K., Tleukhanova N.T., “Estimates of the Norm of the Convolution Operator in Anisotropic Besov Spaces With the Dominated Mixed Derivative”, Bull. Karaganda Univ-Math., 95:3 (2019), 51–59  crossref  mathscinet  isi
    6. Bekmaganbetov K.A., Kervenev K.Y., Toleugazy Y., “Interpolation Theorem For Nikol'Skii-Besov Type Spaceswith Mixed Metric”, Bull. Karaganda Univ-Math., 100:4 (2020), 33–42  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:1011
    Full text:196
    References:84
    First page:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021