|
This article is cited in 6 scientific papers (total in 6 papers)
Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$
K. A. Bekmaganbetova, E. D. Nursultanovab a Kazakhstan Branch of Lomonosov Moscow State University
b L. N. Gumilev Eurasian National University
Abstract:
We study the anisotropic Besov spaces
$B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$
and obtain limit embedding theorems for them.
Keywords:
Lorentz space, Besov space, embedding theorem, trace theorem.
DOI:
https://doi.org/10.4213/im2741
Full text:
PDF file (554 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2009, 73:4, 655–668
Bibliographic databases:
UDC:
517.51
MSC: 46E35 Received: 29.10.2007 Revised: 21.02.2008
Citation:
K. A. Bekmaganbetov, E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$”, Izv. RAN. Ser. Mat., 73:4 (2009), 3–16; Izv. Math., 73:4 (2009), 655–668
Citation in format AMSBIB
\Bibitem{BekNur09}
\by K.~A.~Bekmaganbetov, E.~D.~Nursultanov
\paper Embedding theorems for anisotropic Besov spaces $B_{\mathbf{pr}}^{\alpha\mathbf{q}}([0,2\pi)^n)$
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 4
\pages 3--16
\mathnet{http://mi.mathnet.ru/izv2741}
\crossref{https://doi.org/10.4213/im2741}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2583963}
\zmath{https://zbmath.org/?q=an:1187.46025}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..655B}
\elib{https://elibrary.ru/item.asp?id=20358686}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 4
\pages 655--668
\crossref{https://doi.org/10.1070/IM2009v073n04ABEH002460}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000271211200001}
\elib{https://elibrary.ru/item.asp?id=15308583}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956035350}
Linking options:
http://mi.mathnet.ru/eng/izv2741https://doi.org/10.4213/im2741 http://mi.mathnet.ru/eng/izv/v73/i4/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
M. I. Dyachenko, “Local smoothness of the conjugate functions”, Eurasian Math. J., 2:2 (2011), 31–59
-
K. A. Bekmaganbetov, Ye. Toleugazy, “Order of the orthoprojection widths of the anisotropic Nikol'skii–Besov classes in the anisotropic Lorentz space”, Eurasian Math. J., 7:3 (2016), 8–16
-
Toleugazy Y., “Embedding Theorems, Theorems of a Trace and Approach For Anisotropic B-PR(Alpha Q) (T-D) Nikol'Skii-Besov Spaces”, Bull. Karaganda Univ-Math., 84:4 (2016), 146–154
-
Wishart J.R., “Smooth Hyperbolic Wavelet Deconvolution With Anisotropic Structure”, Electron. J. Stat., 13:1 (2019), 1694–1716
-
Sadykova K.K., Tleukhanova N.T., “Estimates of the Norm of the Convolution Operator in Anisotropic Besov Spaces With the Dominated Mixed Derivative”, Bull. Karaganda Univ-Math., 95:3 (2019), 51–59
-
Bekmaganbetov K.A., Kervenev K.Y., Toleugazy Y., “Interpolation Theorem For Nikol'Skii-Besov Type Spaceswith Mixed Metric”, Bull. Karaganda Univ-Math., 100:4 (2020), 33–42
|
Number of views: |
This page: | 1011 | Full text: | 196 | References: | 84 | First page: | 38 |
|