Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 157–168 (Mi izv2760)  

On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations

M. S. Sgibnev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We prove the existence of a non-decreasing solution of a homogeneous system of generalized Wiener–Hopf equations and establish asymptotic properties of this solution.

Keywords: system of integral equations, homogeneous system of Wiener–Hopf equations, matrix of measures, matrix reconstruction function, asymptotic behaviour.

DOI: https://doi.org/10.4213/im2760

Full text: PDF file (521 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 595–606

Bibliographic databases:

UDC: 517.968
MSC: Primary 45E10; Secondary 47B35
Received: 16.01.2008
Revised: 25.07.2008

Citation: M. S. Sgibnev, “On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations”, Izv. RAN. Ser. Mat., 74:3 (2010), 157–168; Izv. Math., 74:3 (2010), 595–606

Citation in format AMSBIB
\Bibitem{Sgi10}
\by M.~S.~Sgibnev
\paper On the existence of a solution of a homogeneous system of generalized Wiener--Hopf equations
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 157--168
\mathnet{http://mi.mathnet.ru/izv2760}
\crossref{https://doi.org/10.4213/im2760}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682375}
\zmath{https://zbmath.org/?q=an:1196.45005}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..595S}
\elib{https://elibrary.ru/item.asp?id=20425212}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 595--606
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002499}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100007}
\elib{https://elibrary.ru/item.asp?id=16976152}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049339685}


Linking options:
  • http://mi.mathnet.ru/eng/izv2760
  • https://doi.org/10.4213/im2760
  • http://mi.mathnet.ru/eng/izv/v74/i3/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:380
    Full text:102
    References:58
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021