RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 3, Pages 157–168 (Mi izv2760)  

On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations

M. S. Sgibnev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We prove the existence of a non-decreasing solution of a homogeneous system of generalized Wiener–Hopf equations and establish asymptotic properties of this solution.

Keywords: system of integral equations, homogeneous system of Wiener–Hopf equations, matrix of measures, matrix reconstruction function, asymptotic behaviour.

DOI: https://doi.org/10.4213/im2760

Full text: PDF file (521 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:3, 595–606

Bibliographic databases:

UDC: 517.968
MSC: Primary 45E10; Secondary 47B35
Received: 16.01.2008
Revised: 25.07.2008

Citation: M. S. Sgibnev, “On the existence of a solution of a homogeneous system of generalized Wiener–Hopf equations”, Izv. RAN. Ser. Mat., 74:3 (2010), 157–168; Izv. Math., 74:3 (2010), 595–606

Citation in format AMSBIB
\Bibitem{Sgi10}
\by M.~S.~Sgibnev
\paper On the existence of a solution of a homogeneous system of generalized Wiener--Hopf equations
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 157--168
\mathnet{http://mi.mathnet.ru/izv2760}
\crossref{https://doi.org/10.4213/im2760}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682375}
\zmath{https://zbmath.org/?q=an:1196.45005}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..595S}
\elib{http://elibrary.ru/item.asp?id=20425212}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 595--606
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002499}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100007}
\elib{http://elibrary.ru/item.asp?id=16976152}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049339685}


Linking options:
  • http://mi.mathnet.ru/eng/izv2760
  • https://doi.org/10.4213/im2760
  • http://mi.mathnet.ru/eng/izv/v74/i3/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:335
    Full text:85
    References:57
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019