|
This article is cited in 29 scientific papers (total in 29 papers)
Joint universality of zeta-functions with periodic coefficients
A. Laurinčikas Vilnius University
Abstract:
We obtain a joint universality theorem of Voronin type for
a set of functions consisting of periodic zeta-functions
and periodic Hurwitz zeta-functions with algebraically independent
parameters.
Keywords:
periodic zeta-function, periodic Hurwitz zeta-function, limit theorem, joint universality.
DOI:
https://doi.org/10.4213/im2771
Full text:
PDF file (612 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2010, 74:3, 515–539
Bibliographic databases:
UDC:
511
MSC: 11M35 Received: 15.02.2008 Revised: 06.08.2008
Citation:
A. Laurinčikas, “Joint universality of zeta-functions with periodic coefficients”, Izv. RAN. Ser. Mat., 74:3 (2010), 79–102; Izv. Math., 74:3 (2010), 515–539
Citation in format AMSBIB
\Bibitem{Lau10}
\by A.~Laurin{\v{c}}ikas
\paper Joint universality of zeta-functions with periodic coefficients
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 3
\pages 79--102
\mathnet{http://mi.mathnet.ru/izv2771}
\crossref{https://doi.org/10.4213/im2771}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682373}
\zmath{https://zbmath.org/?q=an:1200.11067}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..515L}
\elib{https://elibrary.ru/item.asp?id=20425210}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 3
\pages 515--539
\crossref{https://doi.org/10.1070/IM2010v074n03ABEH002497}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280306100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049334420}
Linking options:
http://mi.mathnet.ru/eng/izv2771https://doi.org/10.4213/im2771 http://mi.mathnet.ru/eng/izv/v74/i3/p79
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
Laurincikas A., “Joint Discrete Universality For Periodic Zeta-Functions. II”, Quaest. Math.
-
Laurincikas A., “Joint Discrete Universality For Periodic Zeta-Functions. III”, Quaest. Math.
-
Genys J., Macaitienė R., Račkauskienẹ S., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions”, Math. Model. Anal., 15:4 (2010), 431–446
-
Antanas Laurinčikas, Renata Macaitienė, Darius Šiaučiūnas, “Joint universality for zeta-functions of different types”, Chebyshevskii sb., 12:2 (2011), 192–203
-
Laurinčikas A., “On joint universality of the Riemann zeta-function and Hurwitz zeta-functions”, J. Number Theory, 132:12 (2012), 2842–2853
-
Janulis K., Laurinčikas A., Macaitienė R., Šiaučiūnas D., “Joint universality of Dirichlet $L$-functions and periodic Hurwitz zeta-functions”, Math. Model. Anal., 17:5 (2012), 673–685
-
Laurinčikas A., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions. III”, Analytic and Probabilistic Methods in Number Theory, eds. Laurincikas A., Manstavicius E., Stepanauskas G., Tev Ltd, 2012, 185–195
-
R. Kačinskaitė, “Universality of various zeta-functions”, Electronic Notes in Discrete Mathematics, 43 (2013), 129–135
-
Laurinčikas A., Macaitienė R., “Joint universality of the Riemann zeta-function and Lerch zeta-functions”, Nonlinear Anal. Model. Control, 18:3 (2013), 314–326
-
V. Pocevičienė, D. Šiaučiūnas, “A mixed joint universality theorem for zeta-functions. II”, Math. Model. Anal., 19:1 (2014), 52–65
-
A. Laurinčikas, R. Macaitienė, “The joint universality of Dirichlet $L$-functions and Lerch zeta-functions”, Siberian Math. J., 55:4 (2014), 645–657
-
A. Dubickas, A. Laurinčikas, “Joint discrete universality of Dirichlet $L$-functions”, Arch. Math., 104:1 (2015), 25–35
-
K. Matsumoto, “A survey on the theory of universality for zeta and $L$-functions”, Number theory, Ser. Number Theory Appl., 11, ed. Kaneko M. Kanemitsu S. Liu J., World Sci. Publ., Hackensack, NJ, 2015, 95–144
-
A. Laurinčikas, “Universality theorems for zeta-functions with periodic coefficients”, Siberian Math. J., 57:2 (2016), 330–339
-
A. Laurinčikas, L. Meška, “Modification of the Mishou theorem”, Chebyshevskii sb., 17:3 (2016), 135–147
-
Janulis K., Jurgaitis D., Laurincikas A., Macaitiene R., “Universality Theorems for Some Composite Functions”, Math. Model. Anal., 21:1 (2016), 35–46
-
Macaitiene R., Stoncelis M., Siauciunas D., “A Weighted Universality Theorem for Periodic Zeta-Functions”, Math. Model. Anal., 22:1 (2017), 95–105
-
Garbaliauskiene V., Karaliunaite J., Laurincikas A., “On Zeros of Some Combinations of Dirichlet l-Functions and Hurwitz Zeta-Functions”, Math. Model. Anal., 22:6 (2017), 733–749
-
Macaitiene R., Stoncelis M., Siauciunas D., “A Weighted Discrete Universality Theorem For Periodic Zeta-Functions. II”, Math. Model. Anal., 22:6 (2017), 750–762
-
Kacinskaite R., Kazlauskaite B., “Two Results Related to the Universality of Zeta-Functions With Periodic Coefficients”, Results Math., 73:3 (2018), UNSP 95
-
Antanas Laurinčikas, “Joint value distribution theorems for the Riemann and Hurwitz zeta-functions”, Mosc. Math. J., 18:2 (2018), 349–366
-
Kacinskaite R., Matsumoto K., “On Mixed Joint Discrete Universality For a Class of Zeta-Functions. II”, Lith. Math. J., 59:1, SI (2019), 54–66
-
Laurincikas A., “Joint Discrete Universality For Periodic Zeta-Functions”, Quaest. Math., 42:5 (2019), 687–699
-
A. Balčiūnas, R. Macaitienė, D. Šiaučiūnas, “Joint discrete universality for $L$-functions from the Selberg class and periodic Hurwitz zeta-functions”, Chebyshevskii sb., 20:1 (2019), 46–65
-
Balciunas A. Garbaliauskiene V. Karaliunaite J. Macaitiene R. Petuskinaite J. Rimkeviciene A., “Joint Discrete Approximation of a Pair of Analytic Functions By Periodic Zeta-Functions”, Math. Model. Anal., 25:1 (2020), 71–87
-
Laurincikas A., Siauciunas D., Vaiginyt A., “on Joint Approximation of Analytic Functions By Nonlinear Shifts of Zeta-Functions of Certain Cusp Forms”, Nonlinear Anal.-Model Control, 25:1 (2020), 108–125
-
A. Laurinchikas, “Sovmestnaya universalnost dzeta-funktsii s periodicheskimi koeffitsientami. II”, Sib. matem. zhurn., 61:5 (2020), 1064–1076
-
Kacinskaite R., Matsumoto K., “On Mixed Joint Discrete Universality For a Class of Zeta-Functions: a Further Generalization”, Math. Model. Anal., 25:4 (2020), 569–583
-
Laurincikas A., Siauciunas D., Vadeikis G., “A Weighted Version of the Mishou Theorem”, Math. Model. Anal., 26:1 (2021), 21–33
|
Number of views: |
This page: | 384 | Full text: | 102 | References: | 41 | First page: | 10 |
|