RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1966, Volume 30, Issue 3, Pages 705–718 (Mi izv2855)  

This article is cited in 7 scientific papers (total in 7 papers)

Pontrjagin–Hirzebruch class of codimension 2

V. A. Rokhlin


Full text: PDF file (1371 kB)

Bibliographic databases:
UDC: 513.83
Received: 13.09.1965

Citation: V. A. Rokhlin, “Pontrjagin–Hirzebruch class of codimension 2”, Izv. Akad. Nauk SSSR Ser. Mat., 30:3 (1966), 705–718

Citation in format AMSBIB
\Bibitem{Rok66}
\by V.~A.~Rokhlin
\paper Pontrjagin--Hirzebruch class of codimension~2
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1966
\vol 30
\issue 3
\pages 705--718
\mathnet{http://mi.mathnet.ru/izv2855}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=211414}
\zmath{https://zbmath.org/?q=an:0171.22205}


Linking options:
  • http://mi.mathnet.ru/eng/izv2855
  • http://mi.mathnet.ru/eng/izv/v30/i3/p705

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292  mathnet  crossref  mathscinet  zmath
    2. S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. II”, Math. USSR-Izv., 4:3 (1970), 479–505  mathnet  crossref  mathscinet  zmath
    3. A. S. Mischenko, “Gomotopicheskaya invariantnost vysshikh signatur neodnosvyaznykh mnogoobrazii”, UMN, 26:4(160) (1971), 239–240  mathnet  mathscinet  zmath
    4. A. S. Mishchenko, “Infinite-dimensional representations of discrete groups, and higher signatures”, Math. USSR-Izv., 8:1 (1974), 85–111  mathnet  crossref  mathscinet  zmath
    5. M. Sh. Farber, “Ob odnom invariante $(4k-1)$-mernogo mnogoobraziya”, UMN, 30:3(183) (1975), 179–180  mathnet  mathscinet  zmath
    6. A. S. Mishchenko, “Hermitian $K$-theory. The theory of characteristic classes and methods of functional analysis”, Russian Math. Surveys, 31:2 (1976), 71–138  mathnet  crossref  mathscinet  zmath
    7. M. Sh. Farber, “Duality in an infinite cyclic covering and even-dimensional knots”, Math. USSR-Izv., 11:4 (1977), 749–781  mathnet  crossref  mathscinet  zmath
  • Известия Академии наук СССР. Серия математическая
    Number of views:
    This page:234
    Full text:87
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020