RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1964, Volume 28, Issue 2, Pages 365–474 (Mi izv2959)  

This article is cited in 17 scientific papers (total in 17 papers)

Homotopically equivalent smooth manifolds. I

S. P. Novikov


Full text: PDF file (9349 kB)

Bibliographic databases:
Received: 22.03.1963

Citation: S. P. Novikov, “Homotopically equivalent smooth manifolds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 28:2 (1964), 365–474

Citation in format AMSBIB
\Bibitem{Nov64}
\by S.~P.~Novikov
\paper Homotopically equivalent smooth manifolds.~I
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1964
\vol 28
\issue 2
\pages 365--474
\mathnet{http://mi.mathnet.ru/izv2959}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=162246}
\zmath{https://zbmath.org/?q=an:0151.32103}


Linking options:
  • http://mi.mathnet.ru/eng/izv2959
  • http://mi.mathnet.ru/eng/izv/v28/i2/p365

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. R. Kireitov, “On symplectic cobordisms”, Math. USSR-Sb., 12:1 (1970), 77–89  mathnet  crossref  mathscinet  zmath
    2. S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involution from the viewpoint of hamiltonian formalism. applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292  mathnet  crossref  mathscinet  zmath
    3. S. P. Novikov, “Algebraic construction and properties of Hermitian analogs of $K$-theory over rings with involution from the viewpoint of Hamiltonian formalism. applications to differential topology and the theory of characteristic classes. II”, Math. USSR-Izv., 4:3 (1970), 479–505  mathnet  crossref  mathscinet  zmath
    4. A. S. Mishchenko, “Homotopy invariants of nonsimply connected manifolds. I. Rational invariants”, Math. USSR-Izv., 4:3 (1970), 506–519  mathnet  crossref  mathscinet  zmath
    5. A. S. Mischenko, “Gomotopicheskaya invariantnost vysshikh signatur neodnosvyaznykh mnogoobrazii”, UMN, 26:4(160) (1971), 239–240  mathnet  mathscinet  zmath
    6. A. S. Mishchenko, “Infinite-dimensional representations of discrete groups, and higher signatures”, Math. USSR-Izv., 8:1 (1974), 85–111  mathnet  crossref  mathscinet  zmath
    7. A. S. Mishchenko, “Hermitian $K$-theory. The theory of characteristic classes and methods of functional analysis”, Russian Math. Surveys, 31:2 (1976), 71–138  mathnet  crossref  mathscinet  zmath
    8. S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    9. A. F. Kharshiladze, “Surgery on manifolds with finite fundamental groups”, Russian Math. Surveys, 42:4 (1987), 65–103  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    10. Yu. P. Solov'ev, “The topology of four-dimensional manifolds”, Russian Math. Surveys, 46:2 (1991), 167–232  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. P. M. Akhmet'ev, P. J. Eccles, “A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant”, Proc. Steklov Inst. Math., 225 (1999), 40–44  mathnet  mathscinet  zmath
    12. D. Repovš, A. B. Skopenkov, “Borromean Rings and Embedding Obstructions”, Proc. Steklov Inst. Math., 225 (1999), 314–321  mathnet  mathscinet  zmath
    13. M. A. Shtan'ko, “Markov's theorem and algorithmically non-recognizable combinatorial manifolds”, Izv. Math., 68:1 (2004), 205–221  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. I. Maleshich, P. E. Pushkar', D. Repovš, “On Eversion of Spheres”, Proc. Steklov Inst. Math., 247 (2004), 135–142  mathnet  mathscinet  zmath
    15. M. Cencelj, D. Repovš, A. B. Skopenkov, “On the Browder–Levine–Novikov Embedding Theorems”, Proc. Steklov Inst. Math., 247 (2004), 259–268  mathnet  mathscinet  zmath
    16. V. V. Gorbatsevich, “Compact Homogeneous Spaces and Their Generalizations”, Journal of Mathematical Sciences, 153:6 (2008), 763–798  mathnet  crossref  mathscinet  zmath  elib
    17. V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Известия Академии наук СССР. Серия математическая
    Number of views:
    This page:624
    Full text:236
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019