RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1995, Volume 59, Issue 1, Pages 65–102 (Mi izv3)  

This article is cited in 4 scientific papers (total in 4 papers)

Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics

A. V. Bolsinov, A. T. Fomenkoa

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper new orbital invariants of integrable Hamiltonian systems with two degrees of freedom are described, considered on non-singular three-dimensional constant-energy surfaces. A classification up to orbit-preserving homeomorphisms is obtained for dynamical systems that describe the rotation of a rigid body around its centre of mass for various values of the parameters.
Author to whom correspondence should be addressed

Full text: PDF file (7714 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1995, 59:1, 63–100

Bibliographic databases:

MSC: 58F05
Received: 23.02.1994

Citation: A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. RAN. Ser. Mat., 59:1 (1995), 65–102; Izv. Math., 59:1 (1995), 63–100

Citation in format AMSBIB
\Bibitem{BolFom95}
\by A.~V.~Bolsinov, A.~T.~Fomenko
\paper Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
\jour Izv. RAN. Ser. Mat.
\yr 1995
\vol 59
\issue 1
\pages 65--102
\mathnet{http://mi.mathnet.ru/izv3}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1328555}
\zmath{https://zbmath.org/?q=an:0840.58022}
\transl
\jour Izv. Math.
\yr 1995
\vol 59
\issue 1
\pages 63--100
\crossref{https://doi.org/10.1070/IM1995v059n01ABEH000003}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RZ88700003}


Linking options:
  • http://mi.mathnet.ru/eng/izv3
  • http://mi.mathnet.ru/eng/izv/v59/i1/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Russian Math. Surveys, 52:5 (1997), 997–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. E. A. Kudryavtseva, “Conjugation Invariants on the Group of Area-Preserving Diffeomorphisms of the Disk”, Math. Notes, 95:6 (2014), 877–880  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Fomenko A.T., Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133  crossref  mathscinet  zmath  isi  elib  scopus
    4. S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:338
    Full text:118
    References:49
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019