RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2000, Volume 64, Issue 5, Pages 3–20 (Mi izv302)  

This article is cited in 13 scientific papers (total in 13 papers)

Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras

N. N. Ganikhodzhaev, F. M. Mukhamedov

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan

Abstract: The paper contains necessary and sufficient conditions under which the ergodic principle and the regularity condition hold for discrete quantum quadratic stochastic processes defined on von Neumann algebras. A connection between these processes and Markov processes is established.

DOI: https://doi.org/10.4213/im302

Full text: PDF file (1378 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2000, 64:5, 873–890

Bibliographic databases:

MSC: 60G99, 60H99, 60J35, 60K35, 58F11, 60J99, 58F20, 57R50, 92D25, 15A51, 60J35
Received: 21.07.1999

Citation: N. N. Ganikhodzhaev, F. M. Mukhamedov, “Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras”, Izv. RAN. Ser. Mat., 64:5 (2000), 3–20; Izv. Math., 64:5 (2000), 873–890

Citation in format AMSBIB
\Bibitem{GanMuk00}
\by N.~N.~Ganikhodzhaev, F.~M.~Mukhamedov
\paper Ergodic properties of discrete quadratic stochastic processes defined on von Neumann algebras
\jour Izv. RAN. Ser. Mat.
\yr 2000
\vol 64
\issue 5
\pages 3--20
\mathnet{http://mi.mathnet.ru/izv302}
\crossref{https://doi.org/10.4213/im302}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1789184}
\zmath{https://zbmath.org/?q=an:0977.60040}
\transl
\jour Izv. Math.
\yr 2000
\vol 64
\issue 5
\pages 873--890
\crossref{https://doi.org/10.1070/im2000v064n05ABEH000302}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000166683400001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038088087}


Linking options:
  • http://mi.mathnet.ru/eng/izv302
  • https://doi.org/10.4213/im302
  • http://mi.mathnet.ru/eng/izv/v64/i5/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. M. Mukhamedov, “On the ergodic principle for Markov processes associated with quantum quadratic stochastic processes”, Russian Math. Surveys, 57:6 (2002), 1236–1237  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Mukhamedov F., Akin H., Temir S., “On infinite dimensional quadratic Volterra operators”, J. Math. Anal. Appl., 310:2 (2005), 533–556  crossref  mathscinet  zmath  isi  scopus
    3. Ganikhodjaev N., Akin H., Mukhamedov F., “On the ergodic principle for Markov and quadratic stochastic processes and its relations”, Linear Algebra Appl., 416:2-3 (2006), 730–741  crossref  mathscinet  zmath  isi  scopus
    4. Mukhamedov F., “On Marginal Markov Processes of Quantum Quadratic Stochastic Processes”, Quantum Probability and Infinite Dimensional Analysis, Qp-Pq Quantum Probability and White Noise Analysis, 25, 2010, 203–215  crossref  mathscinet  zmath  isi
    5. Farrukh Mukhamedov, Hasan Ak{\i}n, Seyit Temir, Abduaziz Abduganiev, “On quantum quadratic operators of and their dynamics”, Journal of Mathematical Analysis and Applications, 376:2 (2011), 641  crossref  mathscinet  zmath  isi  scopus
    6. Ganikhodzhaev R., Mukhamedov F., Rozikov U., “Quadratic Stochastic Operators and Processes: Results and Open Problems”, Infin Dimens Anal Quantum Probab Relat Top, 14:2 (2011), 279–335  crossref  mathscinet  zmath  isi  elib  scopus
    7. Farrukh Mukhamedov, Abduaziz Abduganiev, “On Kadison-Schwarz Type Quantum Quadratic Operators on”, Abstract and Applied Analysis, 2013 (2013), 1  crossref  mathscinet  isi  scopus
    8. Farrukh Mukhamedov, N.A.kma Supar, P.C.hin Hee, “On quadratic stochastic processes and related differential equations”, J. Phys.: Conf. Ser, 435 (2013), 012013  crossref  isi  scopus
    9. Farrukh Mukhamedov, “Dobrushin ergodicity coefficient and ergodicity of noncommutative Markov chains”, Journal of Mathematical Analysis and Applications, 2013  crossref  mathscinet  isi  scopus
    10. F. Mukhamedov, A. Abduganiev, “On pure quasi-quantum quadratic operators of $\mathbb{M}_2(\mathbb{C})$”, Open Syst. Inf. Dyn, 20:04 (2013), 1350018  crossref  zmath  isi  scopus
    11. Farrukh Mukhamedov, N.A.kma Supar, “On Marginal Processes of Quadratic Stochastic Processes”, Bull. Malays. Math. Sci. Soc, 38:3 (2015), 1281  crossref  mathscinet  zmath  scopus
    12. F. Mukhamedov, “On pure quasi-quantum quadratic operators of $\mathbb{M}_2(\mathbb{C})$ II”, Open Syst. Inf. Dyn., 22:4 (2015), 1550024  crossref  mathscinet  zmath  isi  scopus
    13. Mukhamedov F., “On Circle Preserving Quadratic Operators”, Bull. Malays. Math. Sci. Soc., 40:2 (2017), 765–782  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:237
    Full text:85
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019