RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2001, Volume 65, Issue 1, Pages 81–92 (Mi izv321)  

On the classification of Mori contractions: the case of an elliptic curve

Yu. G. Prokhorov

M. V. Lomonosov Moscow State University

Abstract: We study three-dimensional Mori contractions $f\colon X\to Z$. It is proved that in a “good” model $(\overline{X},\overline{S})$ there are no elliptic components of $\operatorname{Diff}_{\overline{S}}$ with coefficients $\geqslant 6/7$.

DOI: https://doi.org/10.4213/im321

Full text: PDF file (1114 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2001, 65:1, 75–84

Bibliographic databases:

MSC: 14E30, 14E05
Received: 12.09.2000

Citation: Yu. G. Prokhorov, “On the classification of Mori contractions: the case of an elliptic curve”, Izv. RAN. Ser. Mat., 65:1 (2001), 81–92; Izv. Math., 65:1 (2001), 75–84

Citation in format AMSBIB
\Bibitem{Pro01}
\by Yu.~G.~Prokhorov
\paper On the classification of Mori contractions: the case of an elliptic curve
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 1
\pages 81--92
\mathnet{http://mi.mathnet.ru/izv321}
\crossref{https://doi.org/10.4213/im321}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1829405}
\zmath{https://zbmath.org/?q=an:1011.14006}
\elib{http://elibrary.ru/item.asp?id=13380048}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 1
\pages 75--84
\crossref{https://doi.org/10.1070/im2001v065n01ABEH000321}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747088819}


Linking options:
  • http://mi.mathnet.ru/eng/izv321
  • https://doi.org/10.4213/im321
  • http://mi.mathnet.ru/eng/izv/v65/i1/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:198
    Full text:53
    References:18
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019