RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2001, Volume 65, Issue 3, Pages 139–152 (Mi izv339)  

This article is cited in 3 scientific papers (total in 3 papers)

On graded algebras of global dimension 3

D. I. Piontkovskii

Central Economics and Mathematics Institute, RAS

Abstract: Assume that a graded associative algebra $A$ over a field $k$ is minimally presented as the quotient algebra of a free algebra $F$ by the ideal $I$ generated by a set $f$ of homogeneous elements. We study the following two extensions of $A$: the algebra $\overline F=F/I\oplus I/I^2\oplus\dotsb$ associated with $F$ with respect to the $I$-adic filtration, and the homology algebra $H$ of the Shafarevich complex $\operatorname{Sh}(f,F)$ (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the $A$-algebra $H$ in this case is free, and the algebra $\overline F$ is isomorphic to the quotient algebra of a free $A$-algebra by the ideal generated by a so-called strongly free (or inert) set.

DOI: https://doi.org/10.4213/im339

Full text: PDF file (1032 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2001, 65:3, 557–568

Bibliographic databases:

MSC: 16W50, 16E40
Received: 04.05.2000

Citation: D. I. Piontkovskii, “On graded algebras of global dimension 3”, Izv. RAN. Ser. Mat., 65:3 (2001), 139–152; Izv. Math., 65:3 (2001), 557–568

Citation in format AMSBIB
\Bibitem{Pio01}
\by D.~I.~Piontkovskii
\paper On graded algebras of global dimension~3
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 3
\pages 139--152
\mathnet{http://mi.mathnet.ru/izv339}
\crossref{https://doi.org/10.4213/im339}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1853369}
\zmath{https://zbmath.org/?q=an:1003.16003}
\elib{http://elibrary.ru/item.asp?id=13373556}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 557--568
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000339}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28244484301}


Linking options:
  • http://mi.mathnet.ru/eng/izv339
  • https://doi.org/10.4213/im339
  • http://mi.mathnet.ru/eng/izv/v65/i3/p139

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. I. Piontkovskii, “On differential graded Lie algebras”, Russian Math. Surveys, 58:1 (2003), 189–190  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Piontkovski D., “Linear equations over noncommutative graded rings”, J. Algebra, 294:2 (2005), 346–372  crossref  mathscinet  zmath  isi  elib  scopus
    3. D. Piontkovski, “Graded algebras and their differential graded extensions”, J Math Sci, 142:4 (2007), 2267  crossref  mathscinet  zmath  elib  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:257
    Full text:72
    References:29
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019