Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1938, Volume 2, Issue 2, Pages 169–190 (Mi izv3513)  

This article is cited in 2 scientific papers (total in 2 papers)

Sur la meilleure approximation de $|x|^p$ par des polynômes de degrés très élevés

Serge Bernstein


Abstract: Cet article contient la déduction de la valeur asymptotique de la meilleure approximation de $E_n |x|^p$ par des polynômes de degrés très élevés sur le segment $(-1, +1)$.

Full text: PDF file (1479 kB)

Bibliographic databases:
Received: 04.02.1938

Citation: Serge Bernstein, “Sur la meilleure approximation de $|x|^p$ par des polynômes de degrés très élevés”, Izv. Akad. Nauk SSSR Ser. Mat., 2:2 (1938), 169–190

Citation in format AMSBIB
\Bibitem{Ber38}
\by Serge~Bernstein
\paper Sur la meilleure approximation de $|x|^p$ par des polyn\^omes de~degr\'es tr\`es \'elev\'es
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1938
\vol 2
\issue 2
\pages 169--190
\mathnet{http://mi.mathnet.ru/izv3513}
\zmath{https://zbmath.org/?q=an:0022.21601|65.1198.01}


Linking options:
  • http://mi.mathnet.ru/eng/izv3513
  • http://mi.mathnet.ru/eng/izv/v2/i2/p169

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. Peherstorfer, P. Yuditskii, “Uniform approximation of $sgn(x)$ by rational functions with prescribed poles”, Zhurn. matem. fiz., anal., geom., 3:1 (2007), 95–108  mathnet  mathscinet  zmath  elib
    2. F. Pausinger, “Elementary solutions of the Bernstein problem on two intervals”, Zhurn. matem. fiz., anal., geom., 8:1 (2012), 63–78  mathnet  mathscinet  zmath
  • Известия Академии наук СССР. Серия математическая
    Number of views:
    This page:313
    Full text:136
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021