|
This article is cited in 14 scientific papers (total in 14 papers)
The zeta function of an ordinary differential equation on a finite interval
L. A. Dikii
Full text:
PDF file (1151 kB)
Bibliographic databases:
Received: 10.04.1954
Citation:
L. A. Dikii, “The zeta function of an ordinary differential equation on a finite interval”, Izv. Akad. Nauk SSSR Ser. Mat., 19:4 (1955), 187–200
Citation in format AMSBIB
\Bibitem{Dik55}
\by L.~A.~Dikii
\paper The zeta function of an ordinary differential equation on a finite interval
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1955
\vol 19
\issue 4
\pages 187--200
\mathnet{http://mi.mathnet.ru/izv3569}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=73035}
\zmath{https://zbmath.org/?q=an:0068.29503}
Linking options:
http://mi.mathnet.ru/eng/izv3569 http://mi.mathnet.ru/eng/izv/v19/i4/p187
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. R. Its, V. B. Matveev, “Schrödinger operators with finite-gap spectrum and $N$-soliton solutions of the Korteweg–de Vries equation”, Theoret. and Math. Phys., 23:1 (1975), 343–355
-
I. M. Gel'fand, L. A. Dikii, “Asimptotic benaviour of the resolvent of Sturm–LiouvilleI equations and the algebra of the Korteweg–de Vries equations”, Russian Math. Surveys, 30:5 (1975), 77–113
-
I. M. Gel'fand, L. A. Dikii, “Fractional powers of operators and Hamiltonian systems”, Funct. Anal. Appl., 10:4 (1976), 259–273
-
I. M. Gel'fand, L. A. Dikii, “The resolvent and Hamiltonian systems”, Funct. Anal. Appl., 11:2 (1977), 93–105
-
V. A. Sadovnichii, V. E. Podolskii, “A class of Sturm–Liouville operators and approximate calculation of the first eigenvalues”, Sb. Math., 189:1 (1998), 129–145
-
V. V. Dubrovskii, “Regularized traces of nonselfadjoint operators”, Math. Notes, 65:5 (1999), 658–662
-
A. M. Savchuk, A. A. Shkalikov, “Trace Formula for Sturm–Liouville Operators with Singular Potentials”, Math. Notes, 69:3 (2001), 387–400
-
V. A. Sadovnichii, V. E. Podolskii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953
-
I. D. Tsopanov, “Obschie formuly regulyarizovannykh sledov dlya integro-differentsialnykh operatorov”, Vladikavk. matem. zhurn., 9:4 (2007), 32–48
-
Sadovnichii V.A., Podol'skii V.E., “Traces of differential operators”, Differ. Equ., 45:4 (2009), 477–493
-
Maleko E.M., “O metode sledov rezolvent, vychislennykh tochno”, Vestnik Samarskogo gosudarstvennogo universiteta, 2011, no. 86, 37–52
-
M. K. Kerimov, “Approximate computation of eigenvalues and eigenfunctions of Sturm–Liouville differential operators by applying the theory of regularized traces”, Comput. Math. Math. Phys., 52:3 (2012), 351–386
-
Kuzovatov V.I., Kytmanov A.A., “Algorithm For Constructing An Analog of Plan'S Formula”, Program. Comput. Softw., 44:2 (2018), 100–104
-
V. I. Kuzovatov, “On one generalization of the Plan formula”, Russian Math. (Iz. VUZ), 62:5 (2018), 34–43
|
Number of views: |
This page: | 656 | Full text: | 173 | First page: | 1 |
|