RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1955, Volume 19, Issue 6, Pages 381–422 (Mi izv3583)  

This article is cited in 6 scientific papers (total in 6 papers)

Theorems of Tauberian type in spectral analysis of differential operators

V. A. Marchenko


Full text: PDF file (2675 kB)

Bibliographic databases:
Received: 08.06.1954

Citation: V. A. Marchenko, “Theorems of Tauberian type in spectral analysis of differential operators”, Izv. Akad. Nauk SSSR Ser. Mat., 19:6 (1955), 381–422

Citation in format AMSBIB
\Bibitem{Mar55}
\by V.~A.~Marchenko
\paper Theorems of Tauberian type in spectral analysis of differential operators
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1955
\vol 19
\issue 6
\pages 381--422
\mathnet{http://mi.mathnet.ru/izv3583}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=76147}
\zmath{https://zbmath.org/?q=an:0066.06603}


Linking options:
  • http://mi.mathnet.ru/eng/izv3583
  • http://mi.mathnet.ru/eng/izv/v19/i6/p381

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Marchenko, K. V. Maslov, “Stability of the problem of recovering the Sturm–Liouville operator from the spectral function”, Math. USSR-Sb., 10:4 (1970), 475–502  mathnet  crossref  mathscinet  zmath
    2. I. S. Kats, “Generalization of an asymptotic formula of V. A. Marchenko for spectral functions of a second-order boundary value problem”, Math. USSR-Izv., 7:2 (1973), 424–438  mathnet  crossref  mathscinet  zmath
    3. M. I. Lomonosov, A. E. Oganyan, K. P. Cherkasova, “Variational principles and the virial theorem in quantum scattering theory”, Theoret. and Math. Phys., 31:1 (1977), 319–328  mathnet  crossref  mathscinet
    4. B. M. Levitan, L. B. Parnovskii, “On the asymptotic behavior of the discrete spectrum of the Dirichlet and Neumann problems for the Laplace–Beltrami operator on a regular polyhedron in the Lobachevskii space”, Funct. Anal. Appl., 24:1 (1991), 18–25  mathnet  crossref  mathscinet  zmath  isi
    5. A. P. Khromov, “Finite-dimensional perturbations of Volterra operators”, Journal of Mathematical Sciences, 138:5 (2006), 5893–6066  mathnet  crossref  mathscinet  zmath  elib
    6. A. I. Kozko, A. S. Pechentsov, “The spectral function of a singular differential operator of order $2m$”, Izv. Math., 74:6 (2010), 1205–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Академии наук СССР. Серия математическая
    Number of views:
    This page:311
    Full text:153
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019