RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2001, Volume 65, Issue 6, Pages 99–128 (Mi izv366)  

This article is cited in 5 scientific papers (total in 5 papers)

The first main theorem on complements: from global to local

Yu. G. Prokhorova, V. V. Shokurovb

a M. V. Lomonosov Moscow State University
b Johns Hopkins University

Abstract: The purpose of this paper is to explain and generalize the methods of [24] (see also [18] and [19]). We establish that for local Fano contractions the existence of complements can be reduced to the existence of complements for projective Fano varieties of smaller dimension.

DOI: https://doi.org/10.4213/im366

Full text: PDF file (2506 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2001, 65:6, 1169–1196

Bibliographic databases:

Document Type: Article
MSC: 14E30, 14E05, 14J30
Received: 03.10.2000

Citation: Yu. G. Prokhorov, V. V. Shokurov, “The first main theorem on complements: from global to local”, Izv. RAN. Ser. Mat., 65:6 (2001), 99–128; Izv. Math., 65:6 (2001), 1169–1196

Citation in format AMSBIB
\Bibitem{ProSho01}
\by Yu.~G.~Prokhorov, V.~V.~Shokurov
\paper The first main theorem on complements: from global to local
\jour Izv. RAN. Ser. Mat.
\yr 2001
\vol 65
\issue 6
\pages 99--128
\mathnet{http://mi.mathnet.ru/izv366}
\crossref{https://doi.org/10.4213/im366}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1892905}
\zmath{https://zbmath.org/?q=an:1068.14018}
\elib{http://elibrary.ru/item.asp?id=13378617}
\transl
\jour Izv. Math.
\yr 2001
\vol 65
\issue 6
\pages 1169--1196
\crossref{https://doi.org/10.1070/IM2001v065n06ABEH000366}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746493639}


Linking options:
  • http://mi.mathnet.ru/eng/izv366
  • https://doi.org/10.4213/im366
  • http://mi.mathnet.ru/eng/izv/v65/i6/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Kudryavtsev, “Classification of exceptional log del Pezzo surfaces with $\delta=1$”, Izv. Math., 67:3 (2003), 461–497  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Proc. Steklov Inst. Math., 240 (2003), 75–213  mathnet  mathscinet  zmath
    3. A. B. Verevkin, Yu. G. Prokhorov, “The Riemann–Roch theorem on surfaces with log terminal singularities”, J. Math. Sci., 140:2 (2007), 200–205  mathnet  crossref  mathscinet  zmath  elib  elib
    4. Yu. G. Prokhorov, “On semistable Mori contractions”, Izv. Math., 68:2 (2004), 365–374  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. S. A. Kudryavtsev, “Complements on log surfaces”, Sb. Math., 195:6 (2004), 859–878  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:338
    Full text:94
    References:67
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019