Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2002, Volume 66, Issue 1, Pages 153–166 (Mi izv375)  

This article is cited in 5 scientific papers (total in 5 papers)

Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle

S. Yu. Nemirovski

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: It is shown that the mod 2 homology class represented by a Lagrangian Klein bottle in a complex algebraic surface is non-zero. In particular, the Klein bottle does not admit a Lagrangian embedding into the standard symplectic four-space.

DOI: https://doi.org/10.4213/im375

Full text: PDF file (1624 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2002, 66:1, 151–164

Bibliographic databases:

UDC: 513.8+515.1
MSC: 53D12, 14D05, 32F17
Received: 05.09.2001

Citation: S. Yu. Nemirovski, “Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle”, Izv. RAN. Ser. Mat., 66:1 (2002), 153–166; Izv. Math., 66:1 (2002), 151–164

Citation in format AMSBIB
\Bibitem{Nem02}
\by S.~Yu.~Nemirovski
\paper Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 1
\pages 153--166
\mathnet{http://mi.mathnet.ru/izv375}
\crossref{https://doi.org/10.4213/im375}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1917541}
\zmath{https://zbmath.org/?q=an:1041.53049}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 1
\pages 151--164
\crossref{https://doi.org/10.1070/IM2002v066n01ABEH000375}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748484719}


Linking options:
  • http://mi.mathnet.ru/eng/izv375
  • https://doi.org/10.4213/im375
  • http://mi.mathnet.ru/eng/izv/v66/i1/p153

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mironov A. E., “On Hamiltonian-minimal and minimal Lagrangian submanifolds in $\mathbb C^n$ and $\mathbb CP^n$”, Dokl. Math., 69:3 (2004), 352–354  mathnet  mathscinet  zmath  isi
    2. A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. S. Yu. Nemirovski, “Homology class of a Lagrangian Klein bottle”, Izv. Math., 73:4 (2009), 689–698  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. V. V. Shevchishin, “Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups”, Izv. Math., 73:4 (2009), 797–859  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Nemirovski S., “Lagrangian Klein Bottles in $\mathbb R^{2n}$”, GAFA Geom. Funct. Anal., 19:3 (2009), 902–909  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:558
    Full text:237
    References:73
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021