RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2002, Volume 66, Issue 2, Pages 81–148 (Mi izv380)  

This article is cited in 68 scientific papers (total in 68 papers)

Homogenization of elasticity problems on singular structures

V. V. Zhikov

Vladimir State Pedagogical University

Abstract: We consider homogenization theory on periodic networks, junctions and more general singular objects. We show that the homogenized problem typically has a “non-classical” character. This fact is a distinctive feature of homogenization of elasticity problems in contrast to scalar problems.
We investigate the properties of Sobolev spaces for various singular structures, prove a non-classical homogenization principle for singular periodic structures of general type and describe a “scaling effect” for model problems with two small geometrical parameters.

DOI: https://doi.org/10.4213/im380

Full text: PDF file (4993 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2002, 66:2, 299–365

Bibliographic databases:

UDC: 517.9
MSC: 35B27
Received: 23.11.2000
Revised: 10.09.2001

Citation: V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. RAN. Ser. Mat., 66:2 (2002), 81–148; Izv. Math., 66:2 (2002), 299–365

Citation in format AMSBIB
\Bibitem{Zhi02}
\by V.~V.~Zhikov
\paper Homogenization of elasticity problems on singular structures
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 2
\pages 81--148
\mathnet{http://mi.mathnet.ru/izv380}
\crossref{https://doi.org/10.4213/im380}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1918845}
\zmath{https://zbmath.org/?q=an:1043.35031}
\elib{http://elibrary.ru/item.asp?id=13802991}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 2
\pages 299--365
\crossref{https://doi.org/10.1070/IM2002v066n02ABEH000380}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748487201}


Linking options:
  • http://mi.mathnet.ru/eng/izv380
  • https://doi.org/10.4213/im380
  • http://mi.mathnet.ru/eng/izv/v66/i2/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pastukhova S.E., “Homogenization of elasticity problems on periodic box structures of critical thickness”, Doklady Mathematics, 66:3 (2002), 369–373  mathscinet  zmath  isi  elib
    2. Zhikov V.V., Pastukhova S.E., “Homogenization of elasticity problems on periodic lattices of critical thickness”, Doklady Mathematics, 66:1 (2002), 94–98  mathscinet  zmath  isi  elib
    3. Pastukhova S.E., “Homogenization for nonlinear elasticity problems on thin periodic structures”, Doklady Mathematics, 65:2 (2002), 257–261  mathscinet  zmath  isi  elib
    4. V. V. Zhikov, S. E. Pastukhova, “Homogenization on periodic lattices”, Dokl. Math., 68:1 (2003), 79–83  mathnet  mathscinet  mathscinet  zmath  isi  elib
    5. Komarov A. V., Penkin O. M., Pokornyi Yu. V., “On the frequency spectrum of a multidimensional analogue of a fabric membrane”, Dokl. Math., 67:3 (2003), 323–325  mathnet  mathscinet  zmath  isi  elib
    6. Zhikov V. V., Pastukhova S. E., “Korn's inequalities for thin periodic structures”, Dokl. Math., 67:1 (2003), 55–59  mathnet  mathscinet  zmath  isi  elib
    7. V. V. Zhikov, S. E. Pastukhova, “Homogenization for elasticity problems on periodic networks of critical thickness”, Sb. Math., 194:5 (2003), 697–732  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. V. V. Shumilova, “On the Homogenization of a Problem with Two Small Parameters in Double-Porosity Media”, Math. Notes, 74:5 (2003), 753–756  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. E. M. Bogatov, O. M. Penkin, “The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets”, Russian Math. (Iz. VUZ), 47:8 (2003), 65–69  mathnet  mathscinet  zmath  elib
    10. Pastukhova S. E., “On the convergence of hyperbolic semigroups in a variable space”, Dokl. Math., 70:1 (2004), 609–614  mathnet  mathscinet  zmath  isi  elib
    11. Pastukhova S. E., “Homogenization of elasticity problems on a periodic composite structure”, Dokl. Math., 69:2 (2004), 208–213  mathnet  mathscinet  zmath  isi  elib
    12. Pastukhova S. E., “Homogenization of elasticity problems on periodic rod frames of critical thickness”, Dokl. Math., 69:1 (2004), 20–25  mathnet  mathscinet  zmath  isi  elib
    13. S. E. Pastukhova, “About homogenization of elasticity problems on combined structures”, J. Math. Sci. (N. Y.), 132:3 (2006), 313–330  mathnet  crossref  mathscinet  zmath  elib  elib
    14. S. A. Nazarov, “Elliptic Boundary Value Problems in Hybrid Domains”, Funct. Anal. Appl., 38:4 (2004), 283–297  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. V. V. Zhikov, “On gaps in the spectrum of some divergence elliptic operators with periodic coefficients”, St. Petersburg Math. J., 16:5 (2005), 773–790  mathnet  crossref  mathscinet  zmath
    16. S. E. Pastukhova, “Homogenization of elasticity problems on periodic composite structures”, Sb. Math., 196:7 (2005), 1033–1073  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    17. V. V. Zhikov, S. E. Pastukhova, “Homogenized Tensor on Networks”, Proc. Steklov Inst. Math., 250 (2005), 95–101  mathnet  mathscinet  zmath
    18. Pastukhova S.E., “Correctors in the homogenization of elasticity problems on thin structures”, Dokl. Math., 71:2 (2005), 177–182  mathnet  mathscinet  zmath  isi  elib  elib
    19. V. V. Zhikov, A. L. Piatnitski, “Homogenization of random singular structures and random measures”, Izv. Math., 70:1 (2006), 19–67  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. V. V. Shumilova, “Compactness principle for periodic singular and fine structures”, Math. Notes, 79:6 (2006), 878–885  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    21. V. V. Shumilova, “Compactness principle for periodic singular and fine structures”, Math. Notes, 79:2 (2006), 224–231  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    22. Zhikov V.V., Pastukhova S.E., “On limit equations of nonlinear elasticity theory on thin networks”, Dokl. Math., 73:3 (2006), 424–429  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
    23. Shumilova V.V., “On one property of two-scale convergence”, Differ. Equ., 42:1 (2006), 155–157  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    24. V. V. Zhikov, S. E. Pastukhova, “Derivation of the limit equations of elasticity theory on thin nets”, J. Math. Sci. (N. Y.), 135:1 (2006), 2637–2665  mathnet  crossref  mathscinet  zmath
    25. S. E. Pastukhova, “Degenerate equations of monotone type: Lavrent'ev phenomenon and attainability problems”, Sb. Math., 198:10 (2007), 1465–1494  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    26. Cardone G., Esposito A.C., Patukhova S.E., “Homogenization of scalar problems for a combined structure with singular or thin reinforcement”, Z. Anal. Anwend., 26:3 (2007), 277–301  mathscinet  zmath  isi  elib
    27. V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    28. A. M. Meirmanov, “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sb. Math., 199:3 (2008), 361–384  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    29. S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    30. A. M. Meirmanov, “Nonisothermal Filtration and Seismic Acoustics in Porous Soil: Thermoviscoelastic Equations and Lamé Equations”, Proc. Steklov Inst. Math., 261 (2008), 204–213  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    31. V. V. Shumilova, “On the Poincaré Inequality for Periodic Composite Structures”, Proc. Steklov Inst. Math., 261 (2008), 295–297  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    32. Braides A., Piat V.Ch., “Non convex homogenization problems for singular structures”, Networks and Heterogeneous Media, 3:3 (2008), 489–508  crossref  mathscinet  zmath  isi
    33. Bourdin B., Kohn R.V., “Optimization of structural topology in the high-porosity regime”, Journal of the Mechanics and Physics of Solids, 56:3 (2008), 1043–1064  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    34. Peter I. Kogut, Günter Leugering, “Homogenization of constrained optimal control problems for one-dimensional elliptic equations on periodic graphs”, ESAIM COCV, 15:2 (2009), 471  crossref  mathscinet  zmath  isi  scopus
    35. Lukkassen D., Meidell A., Piatnitski A. L., Shamaev A. S., “Twisting a thin periodically perforated elastic rod”, Appl. Anal., 88:10–11 (2009), 1563–1577  crossref  mathscinet  zmath  isi  elib
    36. Pastukhova S. E., “Asymptotic analysis in elasticity problems on thin periodic structures”, Netw. Heterog. Media, 4:3 (2009), 577–604  crossref  mathscinet  zmath  isi  elib  scopus
    37. Cardone G., Corbo Esposito A., Nazarov S. A., “Korn's inequality for periodic solids and convergence rate of homogenization”, Appl. Anal., 88:6 (2009), 847–876  crossref  mathscinet  zmath  isi  elib  scopus
    38. Zhikov V. V., Pastukhova S. E., “Korn inequalities on thin periodic structures”, Netw. Heterog. Media, 4:1 (2009), 153–175  crossref  mathscinet  zmath  isi  elib  scopus
    39. V. V. Shumilova, “O printsipe kompaktnosti v peremennom prostranstve $L^p$ dlya periodicheskikh struktur”, Sib. elektron. matem. izv., 6 (2009), 526–532  mathnet  mathscinet  elib
    40. A. M. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, J. Math. Sci. (N. Y.), 163:2 (2009), 111–150  mathnet  crossref  mathscinet  zmath  elib
    41. Peter I. Kogut, Guenter Leugering, “Optimal L 1-Control in Coefficients for Dirichlet Elliptic Problems: W-Optimal Solutions”, J Optim Theory Appl, 2011  crossref  mathscinet  isi  scopus
    42. Shamaev A.S., Shumilova V.V., “Averaging the acoustics equations for a viscoelastic material with channels filled with a viscous compressible fluid”, Fluid Dynamics, 46:2 (2011), 250–261  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
    43. V. V. Shumilova, “Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a liquid”, Journal of Mathematical Sciences, 190:1 (2013), 194–208  mathnet  crossref  mathscinet
    44. Kogut P.I., Leugering G., “Optimal L-1-Control in Coefficients for Dirichlet Elliptic Problems: H-Optimal Solutions”, Z Anal Anwend, 31:1 (2012), 31–53  crossref  mathscinet  zmath  isi  elib  scopus
    45. Ciro D'Apice, Umberto De Maio, Ol'ga P. Kogut, “Optimal Control Problems in Coefficients for Degenerate Equations of Monotone Type: Shape Stability and Attainability Problems”, SIAM J. Control Optim, 50:3 (2012), 1174  crossref  mathscinet  zmath  isi  scopus
    46. Shamaev A.S., Shumilova V.V., “Homogenization of the Acoustic Equations for a Porous Long-Memory Viscoelastic Material Filled with a Viscous Fluid”, Differ. Equ., 48:8 (2012), 1161–1173  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    47. Moussa A.A. Zlaiji L., “Dimension Reduction and Homogenization of Random Degenerate Operators. Part I”, LMS J. Comput. Math., 15 (2012), 1–22  crossref  mathscinet  zmath  isi  elib  scopus
    48. D.Z. Bare, J. Orlik, G. Panasenko, “Asymptotic dimension reduction of a Robin-type elasticity boundary value problem in thin beams”, Applicable Analysis, 2013, 1  crossref  mathscinet  isi  scopus
    49. V. V. Shumilova, “Homogenizing the Viscoelasticity Problem with Long-Term Memory”, Math. Notes, 94:3 (2013), 414–425  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    50. J. Math. Sci. (N. Y.), 196:2 (2014), 152–164  mathnet  crossref  mathscinet
    51. Lukkassen D., Meidell A., “Some Engineering and Mathematical Aspects in the Design of Heavy Goods Railway Lines the Paper Is Dedicated To Professor Lars-Erik Persson, on the Occasion of His 70Th Birthday”, 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, AIP Conference Proceedings, 1637, ed. Sivasundaram S., Amer Inst Physics, 2014, 616–620  crossref  isi
    52. Sorokin V.S., “Homogenization of One-Dimensional Oscillatory Systems With Spatially Modulated Parameters”, Pmm-J. Appl. Math. Mech., 78:3 (2014), 242–248  crossref  mathscinet  isi  scopus
    53. K. D. Cherednichenko, S. Cooper, S. Guenneau, “Spectral Analysis of One-Dimensional High-Contrast Elliptic Problems with Periodic Coefficients”, Multiscale Model. Simul, 13:1 (2015), 72  crossref  mathscinet  scopus
    54. Alexey S. Shamaev, Vladlena V. Shumilova, “Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid”, Zhurn. SFU. Ser. Matem. i fiz., 8:3 (2015), 356–370  mathnet  crossref
    55. Zhikov V.V., Pastukhova S.E., “Bloch principle for elliptic differential operators with periodic coefficients”, Russ. J. Math. Phys., 23:2 (2016), 257–277  crossref  mathscinet  zmath  isi  elib  scopus
    56. Orlik J., Panasenko G., Shiryaev V., “Optimization of Textile-Like Materials via Homogenization and Beam Approximations”, Multiscale Model. Simul., 14:2 (2016), 637–667  crossref  mathscinet  zmath  isi  elib  scopus
    57. Klevtsovskiy A.V., Mel'nyk T.A., “Asymptotic expansion for the solution to a boundary-value problem in a thin cascade domain with a local joint”, Asymptotic Anal., 97:3-4 (2016), 265–290  crossref  mathscinet  zmath  isi  elib  scopus
    58. Hafsa O.A., Mandallena J.-Ph., “Gamma-Convergence of Nonconvex Integrals in Cheeger-Sobolev Spaces and Homogenization”, Adv. Calc. Var., 10:4 (2017), 381–405  crossref  mathscinet  zmath  isi  scopus
    59. Bellieud M., “Homogenization of Stratified Elastic Composites With High Contrast”, SIAM J. Math. Anal., 49:4 (2017), 2615–2665  crossref  mathscinet  zmath  isi  scopus
    60. Mamchaoui M., Bereksi G.S., “Convergence of Monotone Operators With Respect to Measures”, ZAMM-Z. Angew. Math. Mech., 97:5 (2017), 617–630  crossref  mathscinet  isi  scopus
    61. Hafsa O.A., Mandallena J.-Ph., “Relaxation of Nonconvex Unbounded Integrals With General Growth Conditions in Cheeger-Sobolev Spaces”, Bull. Sci. Math., 142 (2018), 49–93  crossref  mathscinet  zmath  isi  scopus
    62. Kolpakov A.G., Andrianov I.V., Rakin S.I., Rogerson G.A., “An Asymptotic Strategy to Couple Homogenized Elastic Structures”, Int. J. Eng. Sci., 131 (2018), 26–39  crossref  mathscinet  isi  scopus
    63. Abdoul-Anziz H., Seppecher P., “Strain Gradient and Generalized Continua Obtained By Homogenizing Frame Lattices”, Math. Mech. Complex Syst., 6:3 (2018), 213–250  crossref  mathscinet  zmath  isi
    64. A. M. Meirmanov, S. A. Gritsenko, “Homogenization of the equations of filtration of a viscous fluid in two porous media”, Siberian Math. J., 59:5 (2018), 909–921  mathnet  crossref  crossref  isi
    65. Braides A., Piat V.Ch., “Homogenization of Networks in Domains With Oscillating Boundaries”, Appl. Anal., 98:1-2, SI (2019), 45–63  crossref  mathscinet  isi  scopus
    66. A. M. Meirmanov, O. V. Galtsev, S. A. Gritsenko, “On homogenized equations of filtration in two domains with common boundary”, Izv. Math., 83:2 (2019), 330–360  mathnet  crossref  crossref  adsnasa  isi  elib
    67. Cherednichenko K.D., Evans J.A., “Homogenisation of Thin Periodic Frameworks With High-Contrast Inclusions”, J. Math. Anal. Appl., 473:2 (2019), 658–679  crossref  mathscinet  zmath  isi  scopus
    68. Cherednichenko K. Ershova Yu. Kiselev V A., “Time-Dispersive Behavior as a Feature of Critical-Contrast Media”, SIAM J. Appl. Math., 79:2 (2019), 690–715  crossref  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:849
    Full text:257
    References:47
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019