RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Подписка
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. РАН. Сер. матем., 2002, том 66, выпуск 3, страницы 131–158 (Mi izv389)  

Эта публикация цитируется в 59 научных статьях (всего в 59 статьях)

Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними

Д. О. Орлов

Математический институт им. В. А. Стеклова РАН

Аннотация: Изучаются производные категории когерентных пучков на абелевых многообразиях. Дается критерий того, когда два абелевых многообразия имеют эквивалентные производные категории. Описывается группа автоэквивалентностей для производной категории когерентных пучков абелева многообразия.
Библиография: 15 наименований.

DOI: https://doi.org/10.4213/im389

Полный текст: PDF файл (2677 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Izvestiya: Mathematics, 2002, 66:3, 569–594

Реферативные базы данных:

ArXiv: alg-geom/9712017
Тип публикации: Статья
УДК: 512.73
MSC: 18E30, 14K05
Поступило в редакцию: 01.10.2001

Образец цитирования: Д. О. Орлов, “Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними”, Изв. РАН. Сер. матем., 66:3 (2002), 131–158; Izv. Math., 66:3 (2002), 569–594

Цитирование в формате AMSBIB
\RBibitem{Orl02}
\by Д.~О.~Орлов
\paper Производные категории когерентных пучков на~абелевых многообразиях и эквивалентности между ними
\jour Изв. РАН. Сер. матем.
\yr 2002
\vol 66
\issue 3
\pages 131--158
\mathnet{http://mi.mathnet.ru/izv389}
\crossref{https://doi.org/10.4213/im389}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1921811}
\zmath{https://zbmath.org/?q=an:1031.18007}
\elib{http://elibrary.ru/item.asp?id=14321942}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 3
\pages 569--594
\crossref{https://doi.org/10.1070/IM2002v066n03ABEH000389}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0242380986}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/izv389
  • https://doi.org/10.4213/im389
  • http://mi.mathnet.ru/rus/izv/v66/i3/p131

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. В. Голышев, “Вариации Римана–Роха”, Изв. РАН. Сер. матем., 65:5 (2001), 3–32  mathnet  crossref  mathscinet  zmath; V. V. Golyshev, “Riemann–Roch variations”, Izv. Math., 65:5 (2001), 853–881  crossref  mathscinet  zmath  elib  scopus
    2. V. Golyshev, V. Lunts, D. Orlov, “Mirror symmetry for abelian varieties”, J. Algebraic Geom., 10:3 (2001), 433–496  mathscinet  zmath  isi
    3. A. Polishchuk, “Analogue of Weil representation for abelian schemes”, J. Reine Angew. Math., 543 (2002), 1–37  crossref  mathscinet  zmath  isi  scopus
    4. Д. О. Орлов, “Производные категории когерентных пучков и эквивалентности между ними”, УМН, 58:3(351) (2003), 89–172  mathnet  crossref  mathscinet  zmath  adsnasa; D. O. Orlov, “Derived categories of coherent sheaves and equivalences between them”, Russian Math. Surveys, 58:3 (2003), 511–591  crossref  mathscinet  zmath  isi  elib  scopus
    5. Sh. Hosono, B. H. Lian, K. Oguiso, Yau Shing-Tung, “Kummer structures on K3 surface: an old question of T. Shioda”, Duke Math. J., 120:3 (2003), 635–647  crossref  mathscinet  zmath  isi  scopus
    6. Y. Soibelman, V. Vologodsky, “Noncommutative compactifications and elliptic curves”, Int. Math. Res. Not., 2003, no. 28, 1549–1569  crossref  mathscinet  zmath  isi
    7. A. Kapustin, D. Orlov, “Vertex algebras, mirror symmetry, and D-branes: the case of complex tori”, Comm. Math. Phys., 233:1 (2003), 79–136  crossref  mathscinet  zmath  adsnasa  isi  scopus
    8. A. Polishchuk, “Noncommutative two-tori with real multiplication as noncommutative projective varieties”, J. Geom. Phys., 50:1-4 (2004), 162–187  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. A. Yekutieli, “The derived Picard group is a locally algebraic group”, Algebr. Represent. Theory, 7:1 (2004), 53–57  crossref  mathscinet  zmath  isi  elib  scopus
    10. А. Н. Капустин, Д. О. Орлов, “Лекции о зеркальной симметрии, производных категориях и $D$-бранах”, УМН, 59:5(359) (2004), 101–134  mathnet  crossref  mathscinet  zmath  adsnasa; A. N. Kapustin, D. O. Orlov, “Lectures on mirror symmetry, derived categories, and $D$-branes”, Russian Math. Surveys, 59:5 (2004), 907–940  crossref  mathscinet  zmath  isi  elib  scopus
    11. Sh. Hosono, B. H. Lian, K. Oguiso, Yau Shing-Tung, “Autoequivalences of derived category of a K3 surface and monodromy transformations”, J. Algebraic Geom., 13:3 (2004), 513–545  crossref  mathscinet  zmath  isi  scopus
    12. A. Ishii, H. Uehara, “Autoequivalences of derived categories on the minimal resolutions of $A_n$-singularities on surfaces”, J. Differential Geom., 71:3 (2005), 385–435  crossref  mathscinet  zmath  isi  elib  scopus
    13. R. Rouquier, “Catégories dérivées et géométrie birationnelle (d'après Bondal, Orlov, Bridgeland, Kawamata et al.)”, Séminaire Bourbaki. Vol. 2004/2005, Astérisque, 307, Exp. No. 946, 2006, 283–307  mathscinet  zmath  isi
    14. P. Stellari, “Derived categories and Kummer varieties”, Math. Z., 256:2 (2007), 425–441  crossref  mathscinet  zmath  isi  elib  scopus
    15. D. Ploog, “Equivariant autoequivalences for finite group actions”, Adv. Math., 216:1 (2007), 62–74  crossref  mathscinet  zmath  isi  elib  scopus
    16. D. Krashen, M. Lieblich, “Index reduction for Brauer classes via stable sheaves”, Int. Math. Res. Not. IMRN, 2008, no. 8, rnn010, 31 pp.  crossref  mathscinet  zmath  isi  scopus
    17. R. Donagi, T. Pantev, Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc., 193, no. 901, 2008, vi+90 pp.  mathscinet  isi
    18. D. Hernández Ruipérez, C. Tejero Prieto, “Fourier-Mukai transforms for coherent systems on elliptic curves”, J. Lond. Math. Soc. (2), 77:1 (2008), 15–32  crossref  mathscinet  zmath  isi  scopus
    19. E. Macrì, P. Stellari, “Automorphisms and autoequivalences of generic analytic K3 surfaces”, J. Geom. Phys., 58:1 (2008), 133–164  crossref  mathscinet  zmath  adsnasa  isi  scopus
    20. E. Markman, “On the monodromy of moduli spaces of sheaves on $K3$ surfaces”, J. Algebraic Geom., 17:1 (2008), 29–99  crossref  mathscinet  zmath  isi  elib
    21. K. Yoshioka, “Fourier-Mukai transform on abelian surfaces”, Math. Ann., 345:3 (2009), 493–524  crossref  mathscinet  zmath  isi  scopus
    22. D. Huybrechts, “The global Torelli theorem: classical, derived, twisted”, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., 80, no. 1, Amer. Math. Soc., Providence, RI, 2009, 235–258  crossref  mathscinet  zmath  isi
    23. M. Abouzaid, I. Smith, “Homological mirror symmetry for the 4-torus”, Duke Math. J., 152:3 (2010), 373–440  crossref  mathscinet  zmath  isi  elib  scopus
    24. Y. Indexed Kawamata, “Derived categories and minimal models”, Sugaku Expositions. Sugaku Expositions, 23:2 (2010), 235–259  mathscinet
    25. R. Rouquier, “Automorphismes, graduations et catégories triangulées”, J. Inst. Math. Jussieu, 10:3 (2011), 713–751  crossref  mathscinet  zmath  isi  elib  scopus
    26. A. Polishchuk, “Kernel algebras and generalized Fourier-Mukai transforms”, J. Noncommut. Geom., 5:2 (2011), 153–251  crossref  mathscinet  zmath  isi  scopus
    27. H. Uehara, “A counterexample of the birational Torelli problem via Fourier-Mukai transforms”, J. Algebraic Geom., 21:1 (2012), 77–96  crossref  mathscinet  zmath  isi  elib  scopus
    28. Yu. Toda, “Stable pairs on local K3 surfaces”, J. Differential Geom., 92:2 (2012), 285–371  crossref  mathscinet  isi  scopus
    29. D. Favero, “Reconstruction and finiteness results for Fourier-Mukai partners”, Adv. Math., 230:4-6 (2012), 1955–1971  crossref  mathscinet  zmath  isi  elib  scopus
    30. U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 27:4 (2012), 411–424  mathscinet  zmath  isi
    31. A.Canonaco, P. Stellari, “Fourier-Mukai functors: a survey”, Derived categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 27–60  mathscinet  zmath  isi
    32. A. Polishchuk, “Lagrangian-invariant sheaves and functors for abelian varieties”, categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 197–250  mathscinet  zmath  isi
    33. M. G. Gulbrandsen, “Donaldson-Thomas invariants for complexes on abelian threefolds”, Math. Z., 273:1-2 (2013), 219–236  crossref  mathscinet  zmath  isi  scopus
    34. Sh. Yanagida, K. Yoshioka, “Semi-homogeneous sheaves, Fourier-Mukai transforms and moduli of stable sheaves on abelian surfaces”, J. Reine Angew. Math., 684 (2013), 31–86  crossref  mathscinet  zmath  isi  elib  scopus
    35. A. C. López Martín, D. Sánchez Gómez, C. Tejero Prieto, “Relative Fourier-Mukai transforms for Weierstraß fibrations, abelian schemes and Fano fibrations”, Math. Proc. Cambridge Philos. Soc., 155:1 (2013), 129–153  crossref  mathscinet  zmath  isi  scopus
    36. U. V. Dubey, V. M. Mallick, “Reconstruction of a superscheme from its derived category”, J. Ramanujan Math. Soc., 28:2 (2013), 179–193  mathscinet  zmath  isi  elib
    37. Yu. Berest, A. Ramadoss, Tang Xiang, “The Picard group of a noncommutative algebraic torus”, J. Noncommut. Geom., 7:2 (2013), 335–356  crossref  mathscinet  zmath  isi  elib  scopus
    38. P. Sosna, “Fourier-Mukai partners of canonical covers of bielliptic and Enriques surfaces”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 203–213  crossref  mathscinet  zmath  isi  scopus
    39. K. Kawatani, “Fourier-Mukai transformations on K3 surfaces with $\rho=1$ and Atkin-Lehner involutions”, J. Algebra, 417 (2014), 103–115  crossref  mathscinet  zmath  isi  scopus
    40. A. Polishchuk, “Phases of Lagrangian-invariant objects in the derived category of an abelian variety”, Kyoto J. Math., 54:2 (2014), 427–482  crossref  mathscinet  zmath  isi  scopus
    41. A. Auel, M. Bernardara, M. Bolognesi, “Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems”, J. Math. Pures Appl. (9), 102:1 (2014), 249–291  crossref  mathscinet  zmath  isi  scopus
    42. N. Broomhead, D. Ploog, “Autoequivalences of toric surfaces”, Proc. Amer. Math. Soc., 142:4 (2014), 1133–1146  crossref  mathscinet  zmath  isi  elib  scopus
    43. J. Lesieutre, “Derived-equivalent rational threefolds”, Int. Math. Res. Notices, 2015  crossref  mathscinet  scopus
    44. Honigs K., “Derived Equivalent Surfaces and Abelian Varieties, and Their Zeta Functions”, Proc. Amer. Math. Soc., 143:10 (2015), 4161–4166  crossref  mathscinet  zmath  isi  elib  scopus
    45. Smith I., “a Symplectic Prolegomenon”, Bull. Amer. Math. Soc., 52:3 (2015), PII S0273-0979(2015)01477-1, 415–464  crossref  mathscinet  zmath  isi  elib  scopus
    46. Krug A., “on Derived Autoequivalences of Hilbert Schemes and Generalized Kummer Varieties”, Int. Math. Res. Notices, 2015, no. 20, 10680–10701  crossref  mathscinet  zmath  isi  elib  scopus
    47. Meachan C., “Derived Autoequivalences of Generalised Kummer Varieties”, Math. Res. Lett., 22:4 (2015), 1193–1221  crossref  mathscinet  zmath  isi  elib  scopus
    48. Moonen B., “on the Chow Motive of An Abelian Scheme With Non-Trivial Endomorphisms”, J. Reine Angew. Math., 711 (2016), 75–109  crossref  mathscinet  zmath  isi  scopus
    49. Maciocia A., Piyaratne D., “Fourier-Mukai Transforms and Bridgeland Stability Conditions on Abelian Threefolds II”, Int. J. Math., 27:1 (2016), 1650007  crossref  mathscinet  zmath  isi  scopus
    50. Uehara H., “Autoequivalences of derived categories of elliptic surfaces with non-zero Kodaira dimension”, Algebraic Geom., 3:5 (2016), 543–577  crossref  mathscinet  zmath  isi  scopus
    51. Rosenberg J., “Algebraic K -theory and derived equivalences suggested by T-duality for torus orientifolds”, J. Pure Appl. Algebr., 221:7, SI (2017), 1717–1728  crossref  mathscinet  zmath  isi  scopus
    52. Antieau B., “Étale twists in noncommutative algebraic geometry and the twisted Brauer space”, J. Noncommutative Geom., 11:1 (2017), 161–192  crossref  mathscinet  zmath  isi  scopus
    53. Bayer A. Bridgeland T., “Derived automorphism groups of K3 surfaces of Picard rank $1$”, Duke Math. J., 166:1 (2017), 75–124  crossref  mathscinet  zmath  isi  scopus
    54. Antieau B., Krashen D., Ward M., “Derived Categories of Torsors For Abelian Schemes”, Adv. Math., 306 (2017), 1–23  crossref  mathscinet  zmath  isi  scopus
    55. Lopez Martin A.C., Tejero Prieto C., “Derived Equivalences of Abelian Varieties and Symplectic Isomorphisms”, J. Geom. Phys., 122:SI (2017), 92–102  crossref  mathscinet  zmath  isi  scopus
    56. Auel A. Bernardara M., “Cycles, Derived Categories, and Rationality”, Surveys on Recent Developments in Algebraic Geometry, Proceedings of Symposia in Pure Mathematics, 95, ed. Coskun I. DeFernex T. Gibney A., Amer Mathematical Soc, 2017, 199–266  crossref  isi
    57. Wu W., “Equivariant Split Generation and Mirror Symmetry of Special Isogenous Tori”, Adv. Math., 323 (2018), 279–325  crossref  mathscinet  zmath  isi  scopus
    58. Psaroudakis Ch., Vitoria J., “Realisation Functors in Tilting Theory”, Math. Z., 288:3-4 (2018), 965–1028  crossref  mathscinet  zmath  isi  scopus
    59. Auel A. Bernardara M., “Semiorthogonal Decompositions and Birational Geometry of Del Pezzo Surfaces Over Arbitrary Fields”, Proc. London Math. Soc., 117:1 (2018), 1–64  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Просмотров:
    Эта страница:371
    Полный текст:108
    Литература:49
    Первая стр.:3

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018