RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2002, Volume 66, Issue 3, Pages 175–196 (Mi izv391)  

This article is cited in 5 scientific papers (total in 5 papers)

Dynamical correspondence in algebraic Lagrangian geometry

N. A. Tyurin

Joint Institute for Nuclear Research

Abstract: In this paper, which is a continuation of [12], we develop the idea of applying Abelian Lagrangian algebraic geometry (see [3], [4], [10], [11]) to geometric quantization. The Dirac correspondence principle holds for this ALG(a)-quantization. The known models of geometric quantization involving the choice of real or complex polarizations are presented as reductions (or linearizations) of the proposed quantization. This enables us to link the results of known constructions that use polarizations.

DOI: https://doi.org/10.4213/im391

Full text: PDF file (2073 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2002, 66:3, 611–629

Bibliographic databases:

UDC: 512.7+514.7+514.8
MSC: 53D50, 53C15
Received: 25.01.2002

Citation: N. A. Tyurin, “Dynamical correspondence in algebraic Lagrangian geometry”, Izv. RAN. Ser. Mat., 66:3 (2002), 175–196; Izv. Math., 66:3 (2002), 611–629

Citation in format AMSBIB
\Bibitem{Tyu02}
\by N.~A.~Tyurin
\paper Dynamical correspondence in algebraic Lagrangian geometry
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 3
\pages 175--196
\mathnet{http://mi.mathnet.ru/izv391}
\crossref{https://doi.org/10.4213/im391}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1921813}
\zmath{https://zbmath.org/?q=an:1056.53051}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 3
\pages 611--629
\crossref{https://doi.org/10.1070/IM2002v066n03ABEH000391}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844475171}


Linking options:
  • http://mi.mathnet.ru/eng/izv391
  • https://doi.org/10.4213/im391
  • http://mi.mathnet.ru/eng/izv/v66/i3/p175

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Erratum

    This publication is cited in the following articles:
    1. N. A. Tyurin, “Irreducibility of the ALG(a)-Quantization”, Proc. Steklov Inst. Math., 241 (2003), 249–255  mathnet  mathscinet  zmath
    2. N. A. Tyurin, “Letter to the editors”, Izv. Math., 68:3 (2004), 643–644  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. N. A. Tyurin, “Algebraic Lagrangian geometry: three geometric observations”, Izv. Math., 69:1 (2005), 177–190  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. N. A. Tyurin, “Existence theorem for the moduli space of Bohr–Sommerfeld Lagrangian cycles”, Russian Math. Surveys, 60:3 (2005), 572–574  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    5. N. A. Tyurin, “Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein manifold”, Theoret. and Math. Phys., 150:2 (2007), 278–287  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:221
    Full text:85
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019