|
This article is cited in 11 scientific papers (total in 12 papers)
A new estimate of the function $\zeta(1+it)$
I. M. Vinogradov
Full text:
PDF file (1423 kB)
Bibliographic databases:
Received: 04.11.1957
Citation:
I. M. Vinogradov, “A new estimate of the function $\zeta(1+it)$”, Izv. Akad. Nauk SSSR Ser. Mat., 22:2 (1958), 161–164
Citation in format AMSBIB
\Bibitem{Vin58}
\by I.~M.~Vinogradov
\paper A~new estimate of the function $\zeta(1+it)$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1958
\vol 22
\issue 2
\pages 161--164
\mathnet{http://mi.mathnet.ru/izv3962}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=103861}
\zmath{https://zbmath.org/?q=an:0097.26302}
Linking options:
http://mi.mathnet.ru/eng/izv3962 http://mi.mathnet.ru/eng/izv/v22/i2/p161
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
B. V. Levin, A. S. Fainleib, “Àpplication of some integral equations to problems of number theory”, Russian Math. Surveys, 22:3 (1967), 119–204
-
A. A. Karatsuba, “Uniform approximation of the remainder term in the Dirichlet divisor problem”, Math. USSR-Izv., 6:3 (1972), 467–475
-
A. F. Lavrik, “A survey of Linnik's large sieve and the density theory of zeros of $L$-functions”, Russian Math. Surveys, 35:2 (1980), 63–76
-
A. A. Karatsuba, “The Riemann zeta function and its zeros”, Russian Math. Surveys, 40:5 (1985), 23–82
-
A. A. Karatsuba, “The distribution of prime numbers”, Russian Math. Surveys, 45:5 (1990), 99–171
-
S. B. Stechkin, A. Yu. Popov, “The asymptotic distribution of prime numbers on the average”, Russian Math. Surveys, 51:6 (1996), 1025–1092
-
A. A. Karatsuba, “Omega Theorems for Zeta Sums”, Math. Notes, 73:2 (2003), 212–217
-
A. A. Karatsuba, “Comments to My Works, Written by Myself”, Proc. Steklov Inst. Math., 282, suppl. 1 (2013), S1–S23
-
D. R. Heath-Brown, “A new $k$th derivative estimate for exponential sums via Vinogradov's mean value”, Proc. Steklov Inst. Math., 296 (2017), 88–103
-
A. Ivić, “Hardy's function $Z(t)$: Results and problems”, Proc. Steklov Inst. Math., 296 (2017), 104–114
-
M. P. Mineev, V. N. Chubarikov, “I.M. Vinogradov's method in number theory and its current development”, Proc. Steklov Inst. Math., 296 (2017), 1–17
-
M. R. Gabdullin, “Estimates for character sums in finite fields of order $p^2$ and $p^3$”, Proc. Steklov Inst. Math., 303 (2018), 36–49
|
Number of views: |
This page: | 524 | Full text: | 270 | First page: | 2 |
|