Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2002, Volume 66, Issue 4, Pages 137–154 (Mi izv397)  

This article is cited in 4 scientific papers (total in 4 papers)

On Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity

Nguyen Khac Vieta, M.-H. Saitob

a Institute of Mathematics, National Centre for Natural Science and Technology
b Kobe University

Abstract: We study Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity. We prove theorems on the structure and uniqueness of such lattices in the maximal case.

DOI: https://doi.org/10.4213/im397

Full text: PDF file (1565 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2002, 66:4, 789–805

Bibliographic databases:

UDC: 517.9
MSC: 14M20, 14H10, 14J26
Received: 12.01.2001

Citation: Nguyen Khac Viet, M. Saito, “On Mordell–Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity”, Izv. RAN. Ser. Mat., 66:4 (2002), 137–154; Izv. Math., 66:4 (2002), 789–805

Citation in format AMSBIB
\Bibitem{NguSai02}
\by Nguyen Khac Viet, M.~Saito
\paper On Mordell--Weil lattices for non-hyperelliptic fibrations on surfaces with zero geometric genus and irregularity
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 4
\pages 137--154
\mathnet{http://mi.mathnet.ru/izv397}
\crossref{https://doi.org/10.4213/im397}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1942097}
\zmath{https://zbmath.org/?q=an:1053.14043}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 4
\pages 789--805
\crossref{https://doi.org/10.1070/IM2002v066n04ABEH000397}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748495828}


Linking options:
  • http://mi.mathnet.ru/eng/izv397
  • https://doi.org/10.4213/im397
  • http://mi.mathnet.ru/eng/izv/v66/i4/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gong Ch., Xu W.-Yu., “on the Mordell?Weil Rank of a Surface Fibration”, Commun. Algebr.  crossref  isi
    2. Kitagawa S., Konno K., “Fibred rational surfaces with extremal Mordell-Weil lattices”, Math. Z., 251:1 (2005), 179–204  crossref  mathscinet  zmath  isi  scopus
    3. Kitagawa S., “On Mordell-Weil lattices of bielliptic fibrations on rational surfaces”, J. Math. Soc. Japan, 57:1 (2005), 137–155  crossref  mathscinet  zmath  isi  scopus
    4. Kitagawa Sh., “Maximal Mordell-Weil lattices of fibred surfaces with $p_g=q=0$”, Rend. Semin. Mat. Univ. Padova, 117 (2007), 205–230  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:269
    Full text:71
    References:26
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021