|
This article is cited in 4 scientific papers (total in 5 papers)
Existence in multiply-connected regions of single-valued analytic functions with a given modulus of boundary values
G. Ts. Tumarkin, S. Ya. Havinson
Full text:
PDF file (1857 kB)
Bibliographic databases:
Received: 08.04.1957
Citation:
G. Ts. Tumarkin, S. Ya. Havinson, “Existence in multiply-connected regions of single-valued analytic functions with a given modulus of boundary values”, Izv. Akad. Nauk SSSR Ser. Mat., 22:4 (1958), 543–562
Citation in format AMSBIB
\Bibitem{TumHav58}
\by G.~Ts.~Tumarkin, S.~Ya.~Havinson
\paper Existence in multiply-connected regions of single-valued analytic functions with a~given modulus of boundary values
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1958
\vol 22
\issue 4
\pages 543--562
\mathnet{http://mi.mathnet.ru/izv3985}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=97522}
\zmath{https://zbmath.org/?q=an:0090.05005}
Linking options:
http://mi.mathnet.ru/eng/izv3985 http://mi.mathnet.ru/eng/izv/v22/i4/p543
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. I. Plesner, “O povedenii analiticheskikh funktsii na granitse ikh oblasti opredeleniya”, UMN, 22:1(133) (1967), 125–136
-
A. G. Vitushkin, A. A. Gonchar, M. V. Samokhin, V. M. Tikhomirov, P. L. Ul'yanov, V. P. Havin, V. Ya. Èiderman, “Semën Yakovlevich Khavinson (obituary)”, Russian Math. Surveys, 59:4 (2004), 777–785
-
F. G. Avkhadiev, P. L. Shabalin, “Conformal mappings of circular domains on finitely-connected non-Smirnov type domains”, Ufa Math. J., 9:1 (2017), 3–17
-
R. R. Akopyan, “An analogue of the two-constants theorem and optimal recovery of analytic functions”, Sb. Math., 210:10 (2019), 1348–1360
-
R. R. Akopyan, “Analog teoremy Adamara i svyazannye ekstremalnye zadachi na klasse analiticheskikh funktsii”, Tr. IMM UrO RAN, 26, no. 4, 2020, 32–47
|
Number of views: |
This page: | 184 | Full text: | 71 | First page: | 1 |
|