RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1995, Volume 59, Issue 1, Pages 103–120 (Mi izv4)  

On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$

Ya. Sh. Il'yasov


Abstract: The existence of non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$, which are periodic with large periods in one variable and rapidly decreasing in others, is proved using variational methods. The non-existence of such solutions for small periods is shown as well.

Full text: PDF file (2697 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1995, 59:1, 101–119

Bibliographic databases:

MSC: 35J25
Received: 22.02.1993

Citation: Ya. Sh. Il'yasov, “On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$”, Izv. RAN. Ser. Mat., 59:1 (1995), 103–120; Izv. Math., 59:1 (1995), 101–119

Citation in format AMSBIB
\Bibitem{Ily95}
\by Ya.~Sh.~Il'yasov
\paper On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
\jour Izv. RAN. Ser. Mat.
\yr 1995
\vol 59
\issue 1
\pages 103--120
\mathnet{http://mi.mathnet.ru/izv4}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1328556}
\zmath{https://zbmath.org/?q=an:0837.35011}
\transl
\jour Izv. Math.
\yr 1995
\vol 59
\issue 1
\pages 101--119
\crossref{https://doi.org/10.1070/IM1995v059n01ABEH000004}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RZ88700004}


Linking options:
  • http://mi.mathnet.ru/eng/izv4
  • http://mi.mathnet.ru/eng/izv/v59/i1/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:189
    Full text:69
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019