General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Izv. RAN. Ser. Mat.:

Personal entry:
Save password
Forgotten password?

Izv. RAN. Ser. Mat., 2002, Volume 66, Issue 5, Pages 171–182 (Mi izv404)  

This article is cited in 10 scientific papers (total in 10 papers)

The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We consider the tensor product of a unitary representation of $G=\mathrm{SL}_2(\mathbb R)$ with a highest weight and the complex-conjugate representation with a lowest weight. The representation space is acted upon by the direct product $G\times G$. We decompose the resulting representation into a direct integral with respect to the diagonal subgroup $G\subset G\times G$. This direct integral is realized as the $L^2$ space on the product of a circle with coordinate $\phi\in[0,2\pi)$ and the semiline $s\geqslant 0$, where $s$ enumerates unitary representations of $G$ of the principal series.
We get explicit formulae for the action of the Lie algebra $\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ on this direct integral. It turns out that the representation operators are second order differential operators with respect to $\phi$ and second order difference operators with respect to $s$, and the difference operators are expressed in terms of the shift $s\mapsto s+i$ in the imaginary direction.


Full text: PDF file (909 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2002, 66:5, 1035–1046

Bibliographic databases:

UDC: 519.46
MSC: 22E46, 43A85
Received: 06.04.2001

Citation: Yu. A. Neretin, “The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction”, Izv. RAN. Ser. Mat., 66:5 (2002), 171–182; Izv. Math., 66:5 (2002), 1035–1046

Citation in format AMSBIB
\by Yu.~A.~Neretin
\paper The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 5
\pages 171--182
\jour Izv. Math.
\yr 2002
\vol 66
\issue 5
\pages 1035--1046

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. F. Molchanov, “Canonical Representations and Overgroups for Hyperboloids”, Funct. Anal. Appl., 39:4 (2005), 284–295  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Molchanov V.F., “Canonical representations and overgroups for hyperboloids of one sheet and Lobachevsky spaces”, Acta Appl. Math., 86:1-2 (2005), 115–129  crossref  mathscinet  zmath  isi  elib  scopus
    3. J. Math. Sci. (N. Y.), 141:4 (2007), 1452–1478  mathnet  crossref  mathscinet  zmath  elib
    4. Molchanov V.F., “Canonical representations on lobachevsky spaces: an interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337  crossref  mathscinet  zmath  isi  elib  scopus
    5. V. F. Molchanov, “Poisson and Fourier Transforms for Tensor Products”, Funct. Anal. Appl., 49:4 (2015), 279–288  mathnet  crossref  crossref  isi  elib
    6. Molchanov V.F., “Canonical Representations For Hyperboloids: An Interaction With An Overalgebra”, Geometric Methods in Physics, Trends in Mathematics, eds. Kielanowski P., Ali S., Bieliavsky P., Odzijewicz A., Schlichenmaier M., Voronov T., Springer Int Publishing Ag, 2016, 129–138  crossref  mathscinet  zmath  isi
    7. Yu. A. Neretin, “Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition”, Funct. Anal. Appl., 52:3 (2018), 194–202  mathnet  crossref  crossref  isi  elib
    8. Molchanov V.F., “Polynomial Quantization and Overalgebra”, Algebr. Represent. Theory, 21:5 (2018), 1071–1085  crossref  mathscinet  zmath  isi  scopus
    9. Neretin Yu.A., “Restriction of Representations of Gl (N+1, C) to Gl (N, C) and Action of the Lie Overalgebra”, Algebr. Represent. Theory, 21:5 (2018), 1087–1117  crossref  mathscinet  zmath  isi  scopus
    10. Neretin Yu.A., “The Fourier Transform on the Group G(l)2(R) and the Action of the Overalgebra Gl(4)”, J. Fourier Anal. Appl., 25:2 (2019), 488–505  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:229
    Full text:80
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019